

MUSA has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 847441.

MÜSA

Editors: Sandro Paci (University of Pisa) Delphine Mayer (LGI)

https://musa-h2020.eu/
 MUSA H2020 EUROPEAN PROJECT

The presentations reflect only the authors' view, and the European Commission is not responsible for any use that may be made of the information they contains.

TABLE OF CONTENTS

TABLE OF CONTENTS			
Abbre	Abbreviations		
1	Introduction	.4	
	1.1 Learning Modules Presentation	.4	
2	Synthesis	.4	
3	Main Highlights	.5	
Acknowledgments			
Annex I: Workshop Agenda			
Annex	Annex II: Presentations		

Abbreviations

AB	Advisory Board
AM	Accident Management
BEPU	Best Estimate Plus Uncertainty
CNSC	Canadian Nuclear Safety Commission
ExB	Executive Board
EURATOM	European Atomic Energy Community
EU	European Union
EUG	End Users Group
FOM	Figure Of Merit
IAEA	International Atomic Energy Agency
JAEA	Japan Atomic Energy Agency
MSc	Master of Science
MUSA	Management and Uncertainties of Severe Accidents
NEA	Nuclear Energy Agency
OECD	Organization for Economic Co-operation and Development
ONR	Office for Nuclear Regulation
PMO	Project Management Office
SA	Severe Accident
SAM	Severe Accident Management
SFP	Spent Fuel Pool
SNL	Sandia National Laboratories
ST	Source Term
UaSA	Uncertainty and Sensitivity Analysis
UP	Uncertainties of input deck Parameters
UQ	Uncertainties Quantification
WP	Working Package
1F4	Fukushima Daiichi Unit 4

1 Introduction

The overall objective of the **Management and Uncertainties of Severe Accident (MUSA)** project was to assess the capability of Severe Accident (SA) codes when modelling reactor and SFP (Spent Fuel Pool) accident scenarios of Gen II and III Nuclear Power Plants. The MUSA Consortium comprises 29 partners, spread across 3 continents, and involves some of the most experienced organizations in the scientific domain of SA.

MUSA was characterized by an innovative research agenda in order to move forward the predictive capability of SA analysis codes by combining them with the best available/improved Uncertainties Quantification (UQ) tools and embedding Accident Management (AM) as an intrinsic aspect of SA analyses. A special attention has been given to educational and training aspects, disseminating the acquired knowledge also towards the young generation of researchers.

The **Final open workshop** at the end of the project, whose Proceedings are collected in the present document, open to international participants outside of the MUSA consortium, was held in hybrid mode at CIEMAT Madrid from 10 to 11 May 2023, with about one hundred of registered participants. The main goals of this final workshop were the public dissemination of the MUSA project results and gathering conclusions and outcomes towards the nuclear European community and even beyond, such as IAEA and OECD/NEA.

1.1 Learning Modules Presentation

The major outcomes of MUSA have been directly disseminated to MSc students/young researchers and to a generic audience also through e-learning modules that are made available from the project public website <u>https://musa-h2020.eu/</u> with a free access. These learning modules, compiling both the major outcomes from MUSA project and additional insights concerning codes predictability and the Fukushima accident, have been launched with a partner initiative, during this Final Open workshop. Three videos with a duration of about 45 min each have been realized, addressing the following MUSA topics:

- Analysis of severe accidents: From the early days to the near future (by CIEMAT).
- Methodologies for uncertainty assessment in SAs, with particular emphasis on the ST estimates (by UNIPI).
- Assessment of ST Uncertainties in Fukushima-like scenarios (by CIEMAT).

2 Synthesis

The Agenda of the Workshop is reported in the Annex I while the open presentations are collected in the Annex II.

Opening Session - The MUSA open workshop was launched with a session bringing external-to-MUSA information on SA uncertainties. It consisted in two invited lectures:

- "Severe Accident Uncertainites Analysis", D. Luxat (SNL, United States of America)¹.
- "Uncertainties of Source Term in the Accident at the Fukushima Daiichi Nuclear Power Station", Y. Maruyama (JAEA, Japan).

After the discussion of both keynote lectures, a round table with both authors and S. Gyepi-Garbrah (CNSC, Canada) and A. Tehrani (ONR, United Kingdom) on "*The use of UQ in the regulatory process*" was held. Among the very many ideas discussed a few can be cited: the need to proceed in a continuous enhancing of nuclear safety and an efficient way and how UaSA might

¹ This presentation is not included in the Annex II. www.musa-h2020.eu

Proceedings of the MUSA Final Open Workshop

help; the potential new paths that "emergent models" might bring into the area; the need to bring advanced methods, particularly UaSA, as close as feasible to AM and look for the best way to fill the decision process; the tight and strong relation of uncertainties with the specific accident scenarios; the key role of understanding the analytical methods to be used on nuclear safety analysis, no matter which ones, from surrogates to multi-scales modelling; or the indispensable "substantiation" that should support any safety statement.

Session 1 consists of a single introductory presentation of the project (CIEMAT). MUSA was presented from its inception to how it was articulated to face with the known challenges. Emphasis was placed on the "expected outcomes" at the onset of the project and the achievement of most of them in the end. It was highlighted that systematization of a methodology was a way too ambitious objective and the fact that a further shot should be given in the form of another research project (called INNOMUSA) based on the outcomes of MUSA.

Session 2 was a recap of the essential elements of the project.

- Uncertainties database (GRS), about the rationale of the database produced, from FOMs to parameters.
- Methodologies Part I the starting point (KIT), on the journey of gathering SA codes and statistical tools and coupling them, the initial diversities among the project partners' approaches and the open aspects of the different approaches.

Session 3 on UQ Applications

- First insights into the UQ application employing the PHEBUS-FTP1 test (ENEA), including the major issues risen and the diversity in the responses.
- Applications to in-reactor SA sequences (JRC), with an identification of the partners' different approaches and an illustration of the achieved results.
- Applications to Spent Fuel Pools (IRSN), with and identification of the different approaches (1F4 scenario, building presence), highlighting diversity among partners and different approaches to SFP modeling.

Session 4 Summary and Final Discussion

- Major insights from MUSA (CIEMAT)
- Reflections on final uncertainties database (GRS), highlighting what brought from the MUSA technical WPs and key issues still to be worked out.
- MUSA from the standpoint of AB & EUG
- The path forward with the presentation of the new project INNOMUSA (CIEMAT)

3 Main Highlights

The MUSA Open Workshop was a successful event in multiple regards, from the attendance and interest shown to the MUSA outcomes and discussions held during the event. A few major highlights are worth summarizing next:

 The MUSA project has been an "imperfect success", with outstanding results achieved in key elements of the application of Uncertainty and Sensitivity Analysis (UaSA) in the SA domain. Examples are: the extensive database collected on uncertainties of input deck parameters (UP); the large collection of SA code/UQ tool coupling fitted for the purpose and used in the project; and the identification of the major challenges that bringing UaSA in SA entail, from the extension of the UP database to the management of failed crashes Proceedings of the MUSA Final Open Workshop

and the consistent and useful way of using data analysis techniques. Particular mention deserve the large databases built-up on in-reactor and Spent Fuel Pool (SFP) applications.

- The need for a systematic and consolidated methodology for the application of UaSA in SA was brought up in presentations and discussions as a mandatory step to make the best out of MUSA. A new project, INNOMUSA, is presently under construction to fill this need. More than 25 organizations within Europe have already expressed their interest.
- The "substantiated" expert judgement was said to be more essential than ever in the UaSA application in SA, from the selection of the UP set to the interpretation of all and every realization conducted, failed cases, bifurcations and outliers included. Emphasis was placed in "substantiating" each technical claims, from those made in the application of UaSA to the ones done in MUSA outcomes.
- The implication of estimated uncertainties on management and decision making during any postulated accident was pinpointed as an area that could substantially benefit from the work done within MUSA.

Finally, both the European Commission Officer and the members of Advisory Board and End User Group of MUSA agreed on the valuable outcomes presented and the exemplary progress of the project, even under the harsh conditions imposed by the COVID-19 pandemic situation.

Acknowledgments

The MUSA Project Coordinator, the ExB components and the Workshop organizers would like to acknowledge the EC Project Officer, the round table speakers and all the lecturers for their contributions to the success of this final event of the MUSA project.

Annex I: Workshop Agenda

CIEMAT Madrid, 10 & 11 May 2023

Agenda

May 10, 2023

9:30 INITIAL SESSION 0: INVITED KEYNOTES (190')

- Welcome E. González, CIEMAT (15')
- On the UQ use in SOARCA D. Luxat, SNL (30'+ 15' Q&A)
- On the major uncertainties of Fukushima SAs Y. Maruyama, JAEA (30'+15' Q&A)

11:15 – 11:30 h Break

- Round table: "On the use of UQ in the regulatory process"- D. Gyepi-Garbrah (CNSC), D. Luxat (SNL), Y. Maruyama (JAEA), A. Tehrani (ONR); (10'/each+30' Q&A)
- 12:45 14:00 h Lunch break

14:00 SESSION 1: INTRODUCTION (60')

Overall presentation of the MUSA project – L.E. Herranz, CIEMAT (45'+15' Q&A).

15:00 – 15:15 h break

15:15 SESSION 2: ESSENTIAL ELEMENTS (80')

- Uncertainties database S. Beck, GRS (25'+15' Q&A)
- Methodologies Part I: The starting point V.H. Sánchez, KIT (25'+15' Q&A)

16:45 h Meeting adjourn

May 11, 2023

9:30 SESSION 3: UQ APPLICATION (150')

First insights into UQ application: The PHEBUS-FTP1 case – F. Mascari, ENEA (30'+15' Q&A)

10:15 – 10:30 h Break (15 min)

- Application to in-reactor SA sequences S. Brumm, JRC (30'+15' Q&A)
- Application to Spent Fuel Pools O. Coindreau, IRSN (30'+15' Q&A)

12:00 – 13:30 Lunch break

13:30 SESSION 4: SUMMARY & DISCUSSION SESSION (135')

- Major insights from MUSA L.E. Herranz, CIEMAT (15'+15' Q&A)
- Final uncertainties database: Reflections S. Beck, GRS (15'+15' Q&A)
- Recommendations on methods (20'+15') V.H. Sánchez, KIT (15'+15' Q&A)
- MUSA from the standpoint of AB & EUG M. Adorni, OECD/NEA; A. Tehrani, ONR; F. Robledo, CSN (45')

15:45 – 16:00 h Break (15 min)

- The path forward: INNOMUSA L.E. Herranz, CIEMAT (15'+15' Q&A)
- Final Open discussion All attendees (30')

17:00 Closure of the workshop

Annex II: Presentations

MINISTERIO DE CIENCIA E INNOVACIÓN

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

MUSAFinal Open WorkshopCIEMAT Madrid,10 & 11 May 2023

Nuclear Science and Technologies at CIEMAT

Collaboration and contract frameworks

MINISTERIO DE CIENCIA E INNOVACIÓN

Energéticas, Medioambientales y Tecnológicas

MÜSAFinal Open WorkshopCIEMAT Madrid,10 & 11 May 2023

Uncertainties of Source Term in the Accident at the Fukushima Daiichi Nuclear Power Station (FDNPS)

MUSA Final Open Workshop (Hybrid)

May 10-11, 2023 CIEMAT, Madrid, Spain

Yu Maruyama

Sector of Nuclear Safety Research and Emergency Preparedness Japan Atomic Energy Agency

Release timing and duration of radioactive materials to the environment

Degradation of confinement functions of NPS

Amount and chemical and physical forms of released radioactive materials

Transport of radioactive materials in pathways from fuels (debris) to the environment

Source term and its uncertainty depend on accident scenarios.

- Assessment of effectiveness of management measures for severe accidents
- Offsite consequence analysis (level 3 PRA) with outputs of level 2 PRA
- Development of optimized emergency protective actions
- Training of emergency responders
- Comparison with numerical safety goals (performance goals) for release of radioactive materials to the environment

Best estimate and uncertainty band of source term are valuable information.

State-of-the-art outputs for different reactor applications

Continuous and efficient improvement of SA codes

- First severe accident of BWRs
- First multi-unit severe accident
- First severe accident induced by external natural hazards (common cause failures of key functions by external hazards)
- Recognition of threat of fuel damage in spent fuel pool
- Long-term and large release of radioactive materials into the environment
- Different severe accident scenarios in damaged three units

Reactor Vessel

 Unintentional depressurization of the reactor vessel (RV) prior to lower head failure

- Formation of leakage paths to the drywell
- Pressure increase in the containment vessel (CV) after the unintentional depressurization of the RV
- Operation of alternative water injection
- Pressure plateau in the CV at around 0.75 MPa
 - Leakage to the reactor building (RB) mainly through the CV top head flange
- Operation of CV venting through the suppression chamber (S/C)
- Hydrogen combustion in the RB

Outputs from OECD/NEA BSAF2 Project - Analysis for Release of Cs to the Environment -

BSAF: Benchmark Study for the Accident at the Fukushima Daiichi Nuclear Power Station

- > Identification of parameters likely to be influential on source term
- Need of further analysis to quantify contribution of each parameters to uncertainty

- Formation of direct leakage pathways from reactor cooling system (RCS) to drywell (unclear mechanisms)
- Flow rate of alternative water injection, potentially changing thermal-hydraulic conditions in RCS
- Chemical behavior of FPs in RCS
- Influence of upper structures in reactor vessel on FP transport

- Chemical speciation of major FPs with high releasability from fuels such as cesium and iodine, taking into account influences of core structural materials
 - Identification of limitation and applicability of chemical equilibrium assumption and chemical reaction kinetics approach for expected chemical and thermal-hydraulic conditions
 - Aerosol physics
 - Condensation and revaporization

- Chemisorption
- pH of water pool

- Locations and areas of FP leakage pathways from containment vessel to reactor building
- Flow rate of alternative water injection, influencing pressure variation in containment vessel
- Pool scrubbing under high temperature conditions including boiling or flushing of water pool

- Thermal decomposition of organic materials in containment vessel such as sheaths and insulators of cables, paints and lubricating oil, and formation of gaseous organic iodine
- Revolatilization of iodine species dissolved in water pool
- Decontamination capability of reactor building
- Release of FPs through aquatic pathways including leaching of FPs

- Pool scrubbing under conditions beyond those of previous studies
 - High temperature of water pool to suppress steam condensation
 - Formation of very complex gas-liquid twophase flow (difficulty to adequately characterize flow conditions and FP migration with various mechanisms in gas phase)

- Source term and its uncertainty are crucially important information for various applications associated with the continuous improvement of reactor safety.
- A large amount of radioactive materials were estimated to be released to the environment by the FDNPS accident.
- Based on the investigation of the FDNPS, and relevant simulations of the FDNPS accident, several findings on source term have been identified and a large uncertainty is considered to still exist in source term evaluation (e.g. boundary conditions and late phase remobilization of FPs).

- Key lessens learned from the accident at the FDNPS should be taken into account in improving methodologies for source term evaluation.
- Uncertainty quantification and sensitivity analyses are anticipated to be beneficial for effective and efficient modeling improvement.
- Worldwide expertise through international cooperation is greatly helpful for further understanding of the FDNPS accident scenarios and source term.

Canadian Nuclear Commission canadienne Safety Commission de sûreté nucléaire

Canada

NSC

UNCERTAINTY QUANTIFICATION IN ANALYSIS AND MANAGEMENT OF REACTOR ACCIDENTS – A REGULATORY PERSPECTIVE

Presented by S. Gyepi-Garbrah Canadian Nuclear Safety Commission May 10, 2023

par #	Uncertain parameters in the SA code	Definition of the UP	stores stores from the
1	VFSEP	VFSEP value determines when phase separation occurs. It refers to the void fraction in the primary system above which the two-phase mixture characteristics no longer lead to the carrying of water over the highest point in the reactor coolant system.	TSAGFAIL GSHAPE CSHAPE TFAIL
2	TCLRUP	The temperature at which cladding fails if it hasn't already failed by ballooning, and allows fission product release	TCLRUP
3	CSHAPE	The chi shape factor to account for non-spherical shapes of the aerosols.	
4	GSHAPE	The gamma shape factor to account for non-spherical shapes in the aerosol coagulation calculations.	VFSEP
5	PCTRUP	Pressure at CV when catastrophic rupture occurs.	CT_Fail
6	TFAIL	Condition allowing the perforation of Calandria Tube.	CT leak
7	TSAGFAIL	Disassembly temperature of channel segment in dry calandria Vessel.	
8	TZRFAIL	Failure temperature for pressure tube and calandria tube.	
9	CT_leak	Containment leakage rate	TZRFAI
10	CT_Fail	Containment failure Pressure	
	Figures	of Merit (FOM)	Risk-Informed Decision Making
	o con	tainment failure time	• Consummate with the risk with the facilit
	o hyd	lrogen in containment	 Implications for novel designs
	cae	sium iodide source term to environment	

Motivation: SA Radiography

Phenomenological domain

- A huge number of phenomena.
- Multidisciplinary (thermal, fluid, mechanical, physical, chemical, ...).
- Strong feedback.

Boundary conditions

- Broad ranges (T, P, D, ...).
- Extreme values.

Timing & Extension

- Integration over long periods (fast & slow phenomena).
- Full NPP scope (micro & macro scale; safeguards; human action).

	CERTIFICATE DUGENIA LABEL STREAM OF A CONTRACT OF A CONTRA
NUCENIA Solitaber Manager Mana	NUGENIA
	 "Update and development of simulation tools to improve safety features and AM strategies for GEN II, GEN III and GEN III+".
	 " should address technology gaps on issues still not yet completely covered by past SA research".
	 " ST re-assessments should be done with a particular emphasis on innovative accident management strategies".
	 " The results should be reflected in the SAMGs and recommendations should be formulated to improve EP&R".

Project Articulation: WPs (MUCO) WP1: MUSA COordination WP2: Identification & Quantification of Uncertainty Sources (IQUS) WP3: Review of UQ Methodologies (RUQM) • WP4: Application of UQ Methods against Integral Expts. (AUQMIE) • WP5: UQ in A&M of reactor accidents (UQAMRA) WP6: UQ & Innovative Management of SFP Accidents (IMSFP) • (COREDIS) WP7: Communication and Results DISsemination 12

MUSA Roadmap 1er semestre | 2º semestre | 2º semestre | 1er semestre | 1er semestre | 2º semestre | 1er semestre | 1er semestre | 2º semestre | 1er s WP1 MUCO WP1.1 Project coordination WP1.2 Management of external supporting groups WP2 IQUS WP2.1 Gen II/III/III+ PWR and VVER WP2.2 Gen II/III/III+ BWR WP2.3 SFP WP3 RUOM WP3.1 Review of uncertainty methodologies and tools WP3.2 Elaboration of guidelines for the use of UaSA codes/metho WP3.3 Feedback integration from application of uncertainty tools WP4 AUOMIE

Deliverables

		Deliverat	bies	
	D1.1	Online workspace	LGI	3
	D1.2	Project Quality Plan	LGI	3
	D1.3	Data Management Plan	LGI	3
	D1.4	Advisory Board recommendations	CIEMAT	6
	D1.5	End User Group requests	CIEMAT	6
	D1.6	Progress report 1	CIEMAT	24
	D1.7	Progress report 2	CIEMAT	36
	D2.1	DRAFT Major sources of uncertainties during severe accidents in LWR and SFP affecting the ST	GRS	18
	D2.2	Major sources of uncertainties of severe accidents in LWR and SFP affecting the ST	GRS	42
	D3.1	Review of uncertainty methodologies and tools applicable to SA codes for the prediction of ST	KIT	18
Contraction of the local division of the loc	D3.2	Guidelines for the use of uncertainty tools for SA codes to predict source term	KIT	48
	D3.3	Best-practice Guidelines of uncertainty quantification performed within MUSA project	KIT	48
	D4.1	UQ in integral SA experiments: Results and lessons learned on application to ST	ENEA	30
	D5.1	Results of uncertainty assessment of ST released to the environment	JRC	48
	D5.2	Best practices for the assessment of ST uncertainty when performing severe accident simulations with SAM actions using system codes	JRC	48
	D5.3	Recommendations on R&D efforts for reducing ST uncertainty released to the environment	JRC	48
	D6.1	Main uncertainties on accident progression and FP release in an SA in an SFP	IRSN	48
	D6.2	Review of SAM measures for SFP accident ST Mitigation and proposals of innovative mitigation measures and systems for an SA in an SFP	IRSN	48
	D6.3	Assessment of potential benefits from innovative mitigation systems for an SA in an SFP	IRSN	48
	D7.1	Communication and dissemination strategy	UNIPI	4
IN THE NEW YORK IN THE REAL PROPERTY OF THE REAL PR	D7.2	Learning modules from MUSA COREDIS	UNIPI	44
	D7.3	Report on communication and dissemination activities	UNIPI	48
and the state of the state of the	D7.4	Report on Education and training activities	UNIPI	48

No ST related FOM Comments 1.1 Total FP & NO release (mass fraction [% ii]) into environment (time dependent or at one point into into bypass scenarios from RCS for reactor scenarios Release path: fittered, unifitered, Release path: fittered, unifitered, Release path: fittered, unifitered, Release from RCS for reactor scenarios 1.2 Total bdine telease (mass fraction [% ii]) into environment (time dependent or total FP release for one point in time) - relevant for SFP scenarios In case a detailed iodine chemistry nor a detailed iodine chemistry nor a detailed iodine chemistry nor a detailed into the environment (1.3 Onset time of FP release from fuel/core (in-vessel), from debris in cavity/MCCI (ex-vessel) and into the environment (or scenarios in the environment (or point in time) - begin of release from fuel/core (in-vessel) (time dependent or a defailed iodine chemistry nor one point in time) - relevant for SFP scenarios Might be difficult to determine if diffication (% iii) from fuel/core (in-vessel) (time dependent or at core point in time) - relevant for SFP scenarios Both affects the in-containment ST fit scenarios	ight be necessary to be differentiated. de separately. at a given time) should be considered. odel is used. ent release paths are modelled. Immert pressure = design pressure
1.1 Total FP & NG release (mass fraction [% ii]) into environment (time dependent or at one point in time): Release path fitting into the introduction into the protocol into the point of the path fitting into the environment of the path fitting into the environment in the point of the path fitting into the environment fitting the path fitting into the environment of the path fitting into the environment in the path fitting into the environment fitting the path fitting into the environment fitting into the environment in the path fitting into the environment fitting in the environment in the path fitting into the environment for SFP scenarios Might be difficult to determine if difficult in the environment is a network for SFP scenarios Might be difficult to determine if difficult is the environment in the environment is environment in the environment in the environment in the environment is a network for SFP scenarios 1.4 Total FP & NG release is relevant for SFP scenarios Both affects the in-containment ST fitted is the in-containment ST fitted is the in-containment ST fitted is the in-containment in the interval in the interval intenvironment intenvinterv	high be necessary to be differentiated. tet a given time) should be considered. odel is used. ent release paths are modelled. Immert pressure = design pressure
1.2 Total boline release (mass fraction [% ii]) in gaseous form to environment (Time dependent or at one point in imm) In case a detailed loadine chemistry or or at one point in imm) 1.3 Onset time of FP release from fuel/core (in-vessel), from debris in cavity/MCCI (ex-vessel) and into the environment - begin of release is relevant for SFP scenarios Might be difficult to determine if difficult to determine if difficult to determine if difficult to determine if difficult to the environment - begin of release is relevant for SFP scenarios 1.4 Total FP & NO release in relevant for SFP scenarios A threshold should be defined: Conte - relevant for SFP scenarios 1.4 Total FP & NO release in diversiting in from fuel/core (in-vessel) (time dependent or at one point in time) Both affects the in-containment ST fi	odel is used.
1.3 Onset time of FP nelases from fuel/core (in-vessel), from debris in cavity/MCCI (ex-vessel) and into the environment, observation of SFP acenarios Might be difficult to determine if diffi	ent release paths are modelled. inment pressure = design pressure
Cotal FP & NG released (mass fraction [% iii) from fuel/core (in-vessel) (time dependent or at one point in time) relevant for SFP scenarios cotal cotal for the in-containment ST file	
15	st
Total FP & No released (mass fractice (% iii) from debris in cavity/MCCI (ex-vessel) (time dependent or at one point in time). - not relevant for SFP scenarios 	
1.6 Total FP & NG airborne in the containment (mass fraction [% ii] and amount in [kg] or concentration [kg/m ³]) (time dependent or at one point in time) of: Image: SPP building for SPP scenarios Important to distinguish FP distribution	n in the containment.
1.7 Total FP solved (mass fraction (% ii) and amount in [kg] or concentration [kg/m ²]) in water pools (time dependent or at one point in time) of: - containment sump, velv well of ther pools for reactor scenarios - SFP water pool for SFP scenarios - SFP water pool for SFP scenarios	e mas fractions should be provided. Itent can be used; total FP content (at a given time) does i if needed to limit the number of FOM, but then the "FP
1.8 Total FP (mass fraction [% ii] and amount in [kg] or concentration [kg/m ²]) deposited on structures (time dependent or at one point in time):	

FOMs

	- not relevant for SFP scenarios	FP content can be used; total FP content (at a given time) does not make much sense.
	Evolution of the cumulated activity of a list of isotopes (to be defined) for SFP scenarios	To compute radiological consequences
No	SAM specific FOM	Comments
2.1	Times of containment/SFP building vent	If relevant
2.2	Time of hydrogen ignition by igniters	If relevant
2.3	Time of containment/SFP building spray	If relevant
2.4	Time of water-ingress/injection into: - reactor cavity / quenching of melt pool for reactor scenarios - In the pool for SFP scenarios	If AM measure
2.5	One more scenario / plant type spec. FOM	

	ŀ	Additional Variables (AV reactor ca
No	Fission Products	Comments
F.1	Total FP deposited (mass fraction [% ii]) inside RCS (time dependent or at one point in time):	Important to distinguish FP distribution between RCS and containment.
F.2	Total FP & NG release (mass fraction [% ii]) into containment (time dependent or at one point in time):	Important to distinguish FP distribution in the containment.
No	Reactor circuit (reactor scenarios)	Comments
R.1	Primary system pressure / depressurization	Might not be needed, scenario dependent, AM measure
R.2	Secondary system pressure	
R.3	Max. core/fuel and core outlet temperature	
R.4	Fraction of failed/molten fuel/CR	Important to understand in-vessel core degradation and loads to RPV
R.5	Mass of core melt relocated into lower plenum	
R.6	Mass of H ₂ produced in-vessel	Indicator of strength of core degradation
R.7	Time of lower head failure	Important to distinguish in- and ex-vessel phase. Time could as well be derived from "Mass of core melt relocated into containment"
	Containment (reactor scenarios)	Comments
C.1	Containment pressure or temperature	Might not be needed, scenario dependent.
C.2	Mass of core melt relocated into reactor cavity	Important to understand ex-vessel/MCCI and loads to containment
C.3	Mass of H ₂ /CO produced ex-vessel by MCCI	Indicator of strength of MCCI / ongoing MCCI
C.4	Accumulated mass of H_2/CO in containment or recombined/burned mass of H_2/CO	Could be difficult if PARs are installed
		Incontraction and an an an an AMOOL

Additional Variables (AVs) – SFP

	Database
Source Term phenomena 1. Core a) EP release	Prencessia Modelling functions Parameters SOURCE TEXN FILESOMENA on which instructions SOURCE TEXN FILESOMENA on which instructions C.F. Province Texnelson() (Town prime of instructions the OPE basis time former with the CEE basis of the former with the former with the CEE basis of the former with the former with the CEE basis of the former with the for
 2. RCS a) FP transport/deposition in RCS b) FP chemistry in RCS 	tandona an far falka 2 Todan para maran Philosophi karl kalamatin 1925 dul romanna Ole presen Ole presen
 3. RCB (Reactor Containment Buildung) a) FP transport/deposition in containment b) FP chemistry in containment 	Recitiveds IRV lower mean feet hat all mean The CORRECT Boot model and any and provide search means that are used in the correct provide configured to a sufficient and any
 c) FP release from corium/debris in containment (Ex-vessel) d) Pool scrubbing c) FP and systems (approve FC)/(S, etc.) 	taronome, normany encourses in the later (F) Blandry in the beneaus in built reasons the beneaus in built reasons Disconsider of the later series (D)
 interactions FP scrubbing and deposition in filters under containment filtered venting 	Humagangaman Shi wi laka tir mind gada nawad (CSEPF) i ku is mai laka tir mind akadi manad
MUSA Open Workshop, Madrid	Eaurer Term phenomena Dimer mileted phenomena Accoded Scenary MAK Accord Scenary Accoded Scenary MAK Accord Scenary Accoded Accoded Scenary Accoded Accoded Scenary Accoded Accoded Acc

		Phenon	nena
Phenomena	Modelling features	Uncertain Parameter	
FP release from the fuel			
Initial inventory	FP inventory in the fuel given in the input; decay not always accounted for	Concentrations of different radionuclides in fuel	
Gap release	FP gap release is initiated at cladding temperature exceeding defined value (MELCOR default = 1173 K)	Cladding failure temperature; uniform	
FP diffusion inside the fuel grain	Diffusion is calculated using experimentally determined diffusion coefficients and activation energies for Cs, and the grain size. Release of other FPs is calculated based on Cs diffusion using scaling factors	Scaling factors for different radionuclide classes; Cs Ba Te Mo Xe I2 Csl Csl Csl Ccsl Ccsl Ccs La Ag Cd	

Phenomena

Phenomena	Modelling features	Uncertain Parameter			
FP release from the fuel		1			
FP transport in the fuel	Grain size is used to calculate the diffusion transport of fission products in the fuel	Lower bound of the grain size distribution			
		Upper bound of the grain size distribution			
		Geometrical diameter			
Fuel burn-up	RN diffusivity in the fuel matrix should increase with increasing burn-up; this is reflected in the diffusion coefficient D being a function of fuel burn- up	Diffusion coefficient for low and high burn-up fuel (sensitivity coefficient SC7106 in MELCOR)			
Volatilization during fuel degradation	Vapor pressures are given as constant values for the duration of the calculation	Speciation of different radionuclides and their vapour pressures			
	Different speciation of Cs can be selected	Chemical form of Cs			
	Initial fraction of iodine as I2 can be given as a function of time in cycle	a Chemical form of iodine			

MÜSA

MUSA Open Workshop, Madrid, 10. May 2023

Phenomena

henomenon	Modelling features	Uncertain Parameter	
3.1.2. FP transportation/deposition in	RCS		
Aerosol class number	Number of particle size classes	class_si	-
erosol particle diameters	R_min – particle minimum geometrical radius (m),	"R_min"	
	R_max particle maximum geometrical radius (m).		
		"R_max"	
Aerosol density	Particle mean density (kg/m3)	Rho	-
Chi shape factor	The chi shape factor allows to account for non- spherical shapes of the aerosols in Stokes' Law for gravitational settling.	CSHAPE	
Gamma shape factor	The gamma shape factor allows to account for non- spherical shapes in the aerosol coagulation calculations.	GSHAPE	
Collision efficiency	The aerosol collision efficiency. A value of .33 represents the Prupacher-Klett model, which is the currently favored model. A value of 1 represents the FUCHS model.	FEO	

Phenomena

Phenomenon	Modelling features	Uncertain Parameter
3.1.2. FP transportation/deposition i	in RCS	1
Aerosol class number	Number of particle size classes	class_si
Seed radius	The initial seed radius for the hygroscopic aerosol growth calculation	XRSEED
FP release into RRC	Gap release into RCS	correlations of cladding rupture
	Particle mean thermal conductivity	Lambda
	Average specific heat of the aerosol	speacheat
	Number of classes of particles	class_si
	R_min particle diameters	R_min
	R_max particle diameters	R_max
	Aerosol density	rho
FP release into RRC	FP release from fuel to gap	initial fuel inventory
FP release into RRC	conditions for gap release	initial gap inventory
FP release into RRC	gap release into RCS	number of failed rods

MÜSA

MUSA Open Workshop, Madrid, 10. May 2023

							Struct	ure of	fdatabase	
							Phenomiena SOURCE TERM P 1, 12 mileane Presi santana, 1 Chen a terre pet al date i statego prese pet al date i statego presentario da anesariamento presentario da anesariamento presentariam	A HENOMERA on which instruct the instruction of the other states and instruction of the set Maxweet and the instruction of the set Maxweet and the instruction of the set Maxweet and the instruction of the set of the set of the set of the set of the set of the set of the open instruction is at the in- instruction of the set of th	Modelling leations out agenitations want to locus on:	Disoretain Parameter
Phenomena	Modelling features	Uncertai Paramet	n reference er value	lower bound	upper bound	pdf	reference	Bast (stronger () parameter i and (American expert is a direct and decommon in BPC) and	a FP gas where a should of clading timp must essender given of when bloke 4 17721	а <i>ты</i> .
								n gan from trafted ingen	The COTEON-Road model and data has a proper instance of the where the out-of sector is flower and the sector of the property of the sec- tor of the sector measure. The relationship for the other File subsidiary is and on the California.	The uncert any paramities per statistic coefficies dire per statistic coefficies dir 7933 which is an an as power annu gins are each planters for each Planters
reactor type	SA sequence	SA code	Organization	Commer	nts Re	view	User feedback	g me burnup of me nue tre 200 difugue eas dans	⁷ The CDECE-Book-model composes the diffusion conclusion for sensitivit to the luminous as () in CBQ (2014) CDECE (10 to solve provide the composition of the luminous receipt and CDE- provide the composition of the luminous receipt and CDE- provide the composition of the luminous receipt and CDE- provide the composition of the luminous receipt and CDE- transmission of the composition of the luminous receipt and CDE-transmission of the composition of the luminous receipt and CDE-transmission of the CDE-transmission of the luminous receipt and CDE-transmission of the luminous receipt and the composition of the luminous receipt and CDE-transmission of the luminous receipt and the composition of the luminous receipt and CDE-transmission of the luminous receipt and the composition of the luminous receipt and CDE-transmission of the luminous receipt and the composition of the luminous receipt and CDE-transmission of the luminous receipt and the composition of the luminous receipt and CDE-transmission of the luminous receipt and the composition of the luminous receipt and CDE-transmission of the luminous receipt and the composition of the luminous receipt and CDE-transmission of the luminous receipt and the composition of the luminous receipt and CDE-transmission of the luminous receipt and the composition of the luminous receipt and the luminous receipt and the composition of the compositio	nal. The constrainty parame the constrainty constraints SCITED FR
							See	rze Term pisewamens 🔰 DYN	Som faken for versid gunde stream LCREPF gifte & main faken for projekt der konstrukti Fake jammer men Gefanst sower an efter men men die jameter minister Oppensymmeter in das gester Bernard Mark der	10404 015 (*)
Μ	Ů SA		MUSA	Open Works	shop, Madri	d, 10. Ma	ay 2023		27	

Description Descripti Descripti Description Description Description	And the second s	Anna Anna Anna Anna Anna Anna Anna Anna	11 Amerika Alima 12 Marca Kata Alima 12 Marca Marca Kata Alima 12 Marca Marca Kata Alima 12 Marca Mar		citilui g	Lannes (Linker Application) Aministration Statistication Interference () Interference () Interference () Interference ()		-	
Standardski bytere provinsk stremeniske i Standardski bytere Markenski Provinsk standardski provinsk Markensk Provinsk standardski provinsk Standardsk Provinsk standardski provinsk Standardsk Provinsk standardsk standardsk Standardsk Provinsk standardsk standardsk Standardsk Provinsk standardsk standardsk standardsk Standardsk Standardsk s	Contraction of the processing	inini I	and a second sec	- Contraction	T States	Lanari (i dan Artikalari Lanari Materialo	via casa	-	-
	in property		a states	- interior	atting	Transmission Additional Additiona	variana		
	CONTRACTOR STREET,	mare -				Arrent L. 198,110 December 1 (199,100) (A. 1 Prime perform 1 December 1 (199,100)	f.		
And and a feature of the second state of the s	A set of the set of th	-			interest	factorization of the	the second second	-	250
Rent Array and A	A DESCRIPTION OF A DESC	there merchanis	Sector-	mitteet		La Real Transmission	· Marian	-	23
And and Annual	10	-	1.41			-140	~		-
	Total State			-	-		-	-	-

Database

Phenomena significantly different from those that occur in reactor scenarios [SOAR NEA 2015]:

Uncertainties database for SFP (3/5)

	 Not axisymmetric geometry 	Sensitivity study	
FAS stored in storage racks	 Radiative heat transfer in SFP geometry 	Sensitivity study	
cells may incorporate neutron-	 Significant ≠ of radioisotopic inventory between FAs 	-	⇔ For most of these
absorbing material	 Neutron-absorbing material 	Uncertainty Quantification?	phenomena, the
FAs contained in a large structure	3D flow pattern	Sensitivity study	quantification can not be achieved by
	 Stratified configuration 	-	the propagation of
Much lower decay power	 T° rise slower than in the reactor case: can affect chemical interaction 	Uncertainty Quantification?	input uncertainties since:
	 Large amount of non-condensable gas: can affect condensation and vaporization process 	Sensitivity study	 Input uncertainties are not properly quantified
At atmospheric pressure, surrounded by air	 ↗ oxidation rate of Zr cladding in air or steam/air mixtures 	Uncertainty Quantification	 There is no suitable modelling
	 Wider range of atmosphere composition: can affect FP release, especially Ru 	Uncertainty Quantification?	modeling
Generally no containment, the cladding is the only barrier	 Importance of the gap inventory for the radiological consequences 	Uncertainty Quantification?	32

Uncertainties database for SFP (4/5)

WP6 UQ/SA Tools applied to Spent Fuel Pools (SFP)

	Uncertainty tool	design	Building model	Number of UPs
DAKOTA	MELCOR	BWR FU-4	No	15
DAKOTA	MELCOR	BWR FU-4	Yes	8
DAKOTA	MELCOR	BWR FU-4	No	15
SUNSET	ASTEC	BWR FU-4	Yes	7
SUNSET	ASTEC	BWR FU-4	Yes	12
SUNSET	ASTEC	BWR FU-4	Yes	7
SUNSET	ASTEC	BWR FU-4	Yes	n.a.
SUSA	RELAP/SCDAP	BWR FU-4	No	25
SUSA	MELCOR	BWR FU-4	Yes	24
RAVEN	MELCOR	BWR FU-4	Yes	25
R + Python script	ASTEC	BWR FU-4	Yes	18
RAVEN + Python script	ASTEC	BWR FU-4	Yes	21

Final remarks		
First quantification of l codes	J&S-tools predicting SA-sequences with different S	Severe Accident
 Unique expereince gair 		
MUSA: Very heteroge	neous analysis in WP5/WP6 regarding	
 Selected FOIMS, number Number of LIPs 		
 Number of runs 		
 Number of SA-sequence 	es	
 Only few partners per transport into the Conta 	ormed the analysis of full SA-sequences including all phases (I inment and ENV)	FP-release and
 Hence, comprehensive Codes's uncertainty for is needed To develop recommended 	, systematic, and more homogenous quantitification specific reactor designs and SA-sequence with di ations, guidelines, etc.	on of the SA- fferent UQ-tools
	,	
MÜSA	MUSA Final Workshop, 10-11.5.2023	21

Introduction on WP4

3

- ▶ WP4, led by ENEA (Italy), is aimed at applying and testing UQ methodologies, against the internationally recognized PHEBUS FPT1 test.
- Considering that FPT1 is a simplified experiment but remains a representative SA scenario, the main objective of the WP4 is to train project partners to applicate UQ to SA analyses.
- ▶WP4 is also a collaborative platform for highlighting and discussing results and issues arising from the application of UQ methodologies, already used for design basis accidents, or in MUSA used for SA analyses.
- WP4 application:
 - Creates the technical background useful for the MUSA full plant and spent fuel (WP4 and WP5).
 - Provides a first contribution for MUSA best practices and lessons learned (WP3).

MÜSA

POMs, ST focused, that have been identified in the WP2 for the reactor case application and that have been considered relevant for the WP4: Release of iodine from top of the bundle [% of i.i.] Release of cesium from top of the bundle [% of i.i.] Cesium retention in the circuit [% of Cs released from the core] Aerosol amount in the containment atmosphere [g] Total gaseous iodine amount in the containment atmosphere [g] Total iodine aerosols amount in the containment atmosphere [g] Total deposited/adsorbed iodine amount in the containment [g]

9

Contributing Partners, SA codes	
and UTs	

Partner	Severe accident code	Uncertainty tool
CIEMAT	MELCOR 2.2	DAKOTA
CNSC	MELCOR 2.2	Python scripts
ENEA	MELCOR 2.2	DAKOTA
Energorisk	MELCOR 1.8.6	DAKOTA within SNAP
EPRI	MAAPv5.05	Python w/associated packages, DAKOTA
GRS	AC ²	SUSA 4.2
INRNE	ASTEC 2.2	SUNSET
KIT	ASTEC 2.2	URANIE 4.1
	ASTEC V2.2.b.	SUNSET V2.1
LEI	RELAP/SCDAPSIM mod3.4	SUSA 4.1
PSI	MELCOR 2.2	DAKOTA within SNAP
SSTC	MELCOR 2.2	SUSA 4.0
Tractebel	MELCOR 2.2	Python in-house tool
TUS	ASTEC 2.2b	SUNSET
UNIPI	MELCOR 2.2	DAKOTA within SNAP / MATLAB script
UNIRM1	MELCOR 2.2	RAVEN v2.1
USNRC	MELCOR 2.2	DAKOTA
VTT	MELCOR 2.2	DAKOTA within SNAP

MÜSA

12

by WP4 partne	ing envi	Sompu		
aristics	CPU Characteristic	RAM	erative systems	Partner
ores at 5.0 GHz)	17 11700k (8 cores a	32 GB	ndows 10	CIEMAT
CPU1.90GHz 2.11GHz	Intel R core i7 CPU1	8 GB	n10-1803 5.06	CNSC
Silver 4108 CPU @ 1.80GHz, 1796 MHz, 8 Cor cessor(s)	Intel® Xeon® Silver 16 Logical Processo	32 GB	ndows 10	ENEA
TM) i9-9900K CPU	Intel(R) Core(TM) i9	16 GB	ndows 10	Energorisk
	Xeon 3.6GHz	16 GB	ndows 10	EPRI
			:-Windows 10/Unix server – Linux, 5_64	GRS
5-9600K CPU @ 3,70 GHz 3,70 GHz	Intel® Core™ i5-960	8,00 GB	-bit operating systems working under ndows 10 Pro	INRNE
i7-6700 CPU @ 3.4 GHz	Intel® Core™ i7-670	16 GB	IUX (Ubuntu 16.04)	КІТ
	2.80 GHz	4 GB	ndows 10 Pro	
J @ 2.20GHz	i7-8750H CPU @ 2	8 GB	ndows 10 Pro	LEI
.20 GHz	Intel i7-8700 3.20 GI	16 GB	ndows 10	PSI
0900F, 2.8 GHz	Intel Core i9-10900F	16 GB	ndows 10	SSTC
Silver 4215 CPU 2,5 GHz	Intel®, Xeon®, Silve	32 GB	ndows 64bit	Tractebel
5-3210M CPU @ 2,50GHz 2,50 GHz	Intel® Core™ i5-321	4 GB	ndows 10, 64-bit Operating System, 4-based processor	TUS
J / Xeon Gold 5218	i9-10885H CPU / Xe	16 GB/64 GB	ndows 10 Pro / Windows Server 19 Datacenter	UNIPI
old 6140 (each node, x 4 nodes)	2 x Xeon E5-Gold 67	256 GB per node	NTOS 7	UNIRM1
	16 Core Xeon	32 GB	ux (Red Hat Enterprise Linux 7.9)	USNRC
365U processor (4 cores)	Intel Core i5-8365U	8 GB	ndows 10 laptop	VTT

	Partner com the refere	putational tir nce case an
Destaur	Computation	al time
Partner	Reference calculation	UQ
CIEMAT	5.6 h	59.24/54.2 h
CNSC	5 h	4.5 d
ENEA	8 h	5 d
Energorisk	1.5 h	10 h
EPRI	9-13 min	60-90 min
GRS	4.5 h	462.6 h
INRNE	39 min	1 d and 10 h
KIT	130 min	
1.51	39 min	70 h
	0.2 h	30-40 h
PSI	5.87 h	22.76 d
SSTC	15 min	5 days
Tractebel	1 h	3 h
TUS	60 min	
UNIPI	3-5 h	1.5 d
UNIRM1	8 h	37 h
USNRC	6 h	361 h
VTT	28 min	15 h

							5 11 1 1
FOM Partners	Release of iodine from top of the bundle	Release of caesium from top of the bundle	Caesium retention in the circuit	Aerosol amount in the containment's atmosphere	Total gaseous iodine amount in the containment's atmosphere	Total lodine aerosol amount in the containment's atmosphere	Total deposited adsorbed iodine amount in the containme
CIEMAT	X	X	X	Х	Х	Х	X
CNSC	1		Х	1		1	12
ENEA			1	X			1
ENERGORISK	X	Х					
EPRI	X	X		Х		Х	X
GRS	X	Х				Х	X
INRNE	Х	X	X	X	X	Х	X
KIT	Х	X	X	1		1.0	1
LEI-ASTEC	Х	X	X	X	X	Х	X
LEI- RELAPSCDAPSIM	X*	X*					
PSI			X	X			1
SSTC					X		
TRACTEBEL		X	Х	X			1
TUS	X	1. T		X	Х	х	X
UNIPI				Х			
UNIRM1				X		1	1
USNRC	X	X	Х	X	X	Х	1
VTT	X	X	X			X	X

Post processing of the data

27

Single value statistical analysis

	average	standard deviation	min	max
'Outputs_variable#1' (FoM1)	74.83292	0.9349476	69.9418	75.4608
'Outputs_variable#2' (FoM2)	75.6778	0.9035606	70.9509	76.2846
'Outputs_variable#3' (FoM3)	44.69411	0.6258984	41.4658	45.2189
'Outputs_variable#4' (FoM4)	17.15974	0.6905951	14.6947	17.709
'Outputs_variable#5' (FoM5)	76.03427	7.690871	57.0591	84.0967
'Outputs_variable#6' (FoM6)	684.8632	29.19382	561.988	706.64
'Outputs_variable#7' (FoM7)	208.0369	20.16689	156.889	230.437

	Partner	Type of regression	Coeff used to rank the	Threshold used to consider the contribution of the uncertain parameters
	· mene	Type of regression	uncertain parameters	
	CIEMAT	Linear	Pearson, Spearman	p-value < 0.05
Coefficients adopted	CNSC	NA	NA	CC confidence interval (Pisner's Transformation) NA
coefficients adopted	ENEA	Correlation	Pearson, Spearman	Absolute value <0.2: low
by the nartners to				Absolute value ≥ 0.2 and < 0.5 : moderate
by the particles to				Absolute value ≥0.5: significant
characterize the input	Energorisk	Correlation	Pearson, Spearman	Positive/negative values:
				between 0.9 and 1.0: very highly
uncertain parameters				between 0.5 and 0.5 moderately
				between 0.3 and 0.5: low
relationship with the				less than 0.3: little if any
5014	EPRI	No information given.		
FOM.	GRS	Correlation	SRCC	Absolute value $< 0.2 \rightarrow$ no statistical significance
				Note: Coeff. of determination for overall evaluation of the quality of the SA (the closer its value to one, the better)
	INRNE	Linear Regression:	Pearson correlation coefficients	Positive/negative values 0.1-0.3: small;
		Correlation technics		Positive/negative values 0.3-0.5: medium;
				Positive/negative values 0.5-1.0: large.
				(Cohen, 1988)
	KIT	Correlation	Pearson	Absolute value <0.2: small/negligible
				Absolute value ≥0.2 and <0.5: moderate
				Absolute value ≥0.5: significant
		Correlation	Spearman	Absolute value <0.2: negligible impact;
	LEI	0.1.2		20.2: influencing parameter.
	DEL	Correlation	Spearman Deserves	Absolute value > 0.2
	SSTC	Correlation	Pearson Spearman	Absolute value < 0.2
	Tractebel	Correlation	Pearson	P. Coefficient<[0.30] Low degree
				0.30 ≤ P. Coefficient≤[0.50] Moderate degree
				P. Coefficient> 0.50 Significant degree
	TUS	Correlation	Pearson coefficients	Absolute value 0.1-0.3 / low
				Absolute value > 0.3 until 0.5 / middle
	UNID	0 12	D C	Absolute value > 0.5 / high
	UNIPI	Correlation	Pearson, Spearman	abs value:
				-0.2 and 0.3 weak
				>0.3 and <0.5: moderate
				>0.5 and <0.7: strong
				>0.7: very strong
	UNIRMI	Correlation	Spearman (Pearson for	abs value:
			comparison)	<0.2: almost negligible
				20.2 and <0.5; weak
				20.5 and -0.7 - strong
				20.7. very strong
T T AT C A	USNRC	No information given.		
	VTT	Correlation		Pearson

Main conclusions from WP4 exercise

- The probabilistic method to propagate input uncertainties has been adopted by all the partners with different SA codes and UT.
- In general, the direct application of UQ methodologies developed e.g. in nuclear thermalhydraulics or thermo-mechanics could be more challenging for SA.
 - Some considerations are needed for example:
 - Possible large number of uncertain input parameters (e.g. due to some limitations of geometric prototypical experimental facilities with prototypical material),
 - Possible higher failure rate of code runs,
 - Possible presence of cliff-edge effects etc.
- Scripting was needed to couple SA codes and UT in most applications
 - it required major efforts for its development than GUI adoption.
 - **it provided more flexibility**, in terms of post-processing capabilities, compared to GUIs which, despite being user-friendly, presented certain limitations.

Main conclusions from WP4 exercise (continued)

31

- The proper choice of the input uncertain parameters and their characterization (range and PDF) is a crucial task, that should be based in general on a sound background (e.g. experimental and analytical data, references, engineering judgment, etc.).
 - Complexity and multi-physics nature of the phenomena occurring in SA and their interconnection might lead to a large set of uncertainty input parameters.
- Certain combinations of input uncertain parameters can affect more the FOMs behavior, generating possible outliers that should be investigated.
 - Results showed that SA codes could be sensitive to the choice of the input uncertain parameter and the related range.
 - the choice of values not varied (i.e. not sampled) in the UQ can influence the stability of the calculations.
- Computational time is a key element to perform UaSA and for plant applications the use of clusters, and eventually the implementation of GUI in clusters, may be necessary.

Insights and results introduction

- All partners have carried out uncertainty and sensitivity analyses for their case, and have identified and solved challenges on the way
- The 8 cases shown in the following are a personal selection, and can only reflect a fraction of the work done
- The work, including the reports of all partners on their contribution, will be summarised in 3 public deliverables of the work package

Final Open Workshop, CIEMAT Madrid, 10 & 11 May 2023 UQ application to in-reactor SA sequences

Organisation	Reactor	SA scenario	SAM strategy
CNPRI	HPR1000	LLOCA	
KAERI	APR1400	C-SGTR induced by SBO	
KIT	KONVOI	MB-LOCA plus SBO	Filtered venting
BELV	PWR-1000	LB-LOCA	
ENEA	PWR-900	SBO	
CIEMAT	PWR (Surry)	SBO	
PSI	PWR-1100	SBO plus SGTR	Fixed-time SG re-flooding
GRS	KONVOI	MB-LOCA plus SBO	
IRSN	PWR-900	SBO plus loss of aux. FW	Fixed-time sump flooding, CFVS
EPRI	PWR (Surry)	ELAP w/o+ w/ mitigation	Un-mitigated vs. AC restored at RPV failure
TRACTEBEL	PWR-1000	SBO	UA for triggering CSS, DCIS, PPORV, CFVS
FRAMATOME	KONVOI	MB-LOCA plus SBO	Filtered venting
ENSO	PWR 4-loop	LT-SBO at low pressure	
INRNE	VVER-1000	LB-LOCA 850mm, SBO	Core quenching at SAMG criterion
CNSC	CANDU-6	LB-LOCA; SBO	
N.IN.E	VVER-1000	LB-LOCA plus SBO	
TUS	VVER-1000	LB-LOCA 300mm, SBO	
SSTC	VVER-1000	SBO	UA for Pressurizer PORVs
Energorisk	VVER-1000	LB-LOCA plus SBO	
LEI	BWR5-LIKE	LB-LOCA plus SBO	
JAEA	BWR4 Mark1	SBO	UA for CFVS, DC water injection
VTT	BWR4 Mark1	SBO	Fixed-time wet-well venting
SAPIENZA	BWR4 Mark1	SBO	Pressure-based wet-well venting
JACOBS	ABWR-LIKE	SBO	UA for triggering/flow rate of High- Pressure Core Flooder

			Insights and	resul	ts (5bis	\$/8)
		Definition	on of SAM actio	on und	certainty	/
11	PPORV opening time	CET +700s	TIME=CET+[700.,1000.,	random/	SCENARIO	WP2
	PRZ Power Operated Relief Valves		1200., 2000., 3000., 4000.,	choice		
			5000.]			
12	CSS triggering time	Time= VF	Time = VF+ [0.0,	random/	SCENARIO	WP:
			5000.,10000.,	choice		
			15000.,20000., 25000.,			
			30000., 40000., 1.0E6]			
13	DCIS triggering time	Time= VF+1800s	Time = VF+1800+ [0.0,	random/	SCENARIO	WP:
	Direct Cavity Injection System		5000.,10000.,	choice		
			15000.,20000., 25000.,			
			30000., 40000., 1.0E6]			
14	CFVS opening pressure	P=4,5 bar_a	[4.0E+5, 4.5E+5, 5.0E+5,	random/	SCENARIO	WP:
			5.5E+5, 6.0E+5]	choice		

Final Open Workshop, CIEMAT Madrid, 10 & 11 May 2023 UQ application to in-reactor SA sequences

Conclusions

27

- A broad range of applications has been carried out
- The objective of an application should be clear to define the extent of the work
- Further work is required to fully explore, but also harmonise, BEPU application
- More proof is needed that assumptions of the statistical method are met => that the sampled FOM distribution is unbiased
- Thanks to all contributors to this work package results are documented in 3 public deliverables

Final Open Workshop, CIEMAT Madrid, 10 & 11 May 2023 UQ application to in-reactor SA sequences

Thank you for your attention.

Questions?

MÜSA

28

<text><list-item><list-item><list-item>

- selection of an accidental scenario
- creation of an input deck and check of its consistency
- determination of uncertainty sources in models
- choice of key target variables as ST FoMs
- uncertainty quantification and sensitivity analysis with the use of UQ-tools to propagate input uncertainties

7

MUSA Final Open Workshop, 10-11 May 2023

Selection of a scenario (1/3)

Geometry identical to the unit 4 of Fukushima Daiichi with simplifications*

Dimensions: 12.2 m × 9.9 m Heat load: 2.4 MW 1535 FA: 548 hot (3,47 kW/FA), 783 cold (0,507 kW/FA), 204 non irradiated

Loss-of-cooling scenario with a computation starting at the onset of fuel uncovery and ending at the onset of fuel melting. The criterion to stop the computation is a fraction of relocated (liquefied or debris) greater than 1-3 %

* See NUGENIA+ AIR-SFP project [May 2015-Sept 2016]

Selection of a scenario (2/3)

FP inventory: provided to the participants, assuming a cooling time for hot (resp. cold) FA's of 3.7 months (resp. 3.15 years), a burnup of about 21 MWd/kg (resp. 42 MWd/kg) with a remaining enrichment of about 2.03 % (resp. 0.77 %)

Modelling domain: only the pool or the pool and the building above the SFP (46 m length, 34.2 m width and 16.4 m height and a 10 m^2 opening of the fuel pool area outwards in order to avoid pressurization)

MUSA Final Open Workshop, 10-11 May 2023

Elaboration and analysis of the reference case (1/5)

Some difficulties encountered during the elaboration of the input data deck:

- ✓ Setting the specified decay heat in MELCOR computations was not straightforward,
- The model for radiative heat exchanges in cores with sub-channels recently developed in ASTEC was not operational,
- ✓ Crash in MELCOR computations when using the SFP-BWR type of reactor (radiative model)

Diversity among partners:

- ✓ Modelling domain (building modeled or not)
- ✓ Ending criterion: 1 to 3% relocated fuel (liquefied or debris)

Objectives:

- ✓ Check the consistency of the input data deck before performing the UaSA, improve the input data decks, correct some mistakes
- ✓ Have a good understanding of the physical phenomena occurring during the accidental scenario
- ✓ All participants were asked to fill xls files with their results (but not a benchmark!)

		M	aximum	cladding T*	at (h)	1% reloc. fuel (h)	м	ass of wa	ater in th	e SFP at	(h)
		500 K	1000	K 1500 k	2000 K	end of the sim.	400 t	300 t	200 1	100 t	50 1
nstitu	tion		-	1						1111	
name	_	_	Ŀ	-1	-		-		-		-
name	Start	f (h)	1			At the end	of the si	mulation	_	-	
name H2	Start o Gap	f (h)	ass	Collapsed	H2 prod*	At the end Magma /	of the sit	mulation use from	fuel (% i	1.) RC	metric

13

MUSA Final Open Workshop, 10-11 May 2023

Elaboration and analysis of the reference case (3/5)

- ✓ The maximum cladding temperature is stable until approx. 1 m of fuel assembly is uncovered. Then, the temperature of the uncovered part of the FAs increases regularly in a first time
- The burst of hot FAs' occurs more than 80 h after the beginning of the transient
- ✓ The heating of cold FAs' is strongly linked to the nodalization and radiative heat transfer between hot and cold FAs (cladding of cold FAs burst or not)
- ✓ An exponential temperature rise is observed when the cladding has reached a temperature at which oxidation starts to be significant ⇔ loss of integrity
- ✓ Depending on the amount of relocated material and on the criterion chosen to stop the computation, the computation ends or continues ⇒ leads to significant differences in computation end times

MUSA Final Open Workshop, 10-11 May 2023

- ✓ First FP release (gap release) occurs when the cladding of hot fuel assemblies' bursts (more than 80 h after the beginning of the transient)
- ✓ Intensity of these first releases depend on the amount of FP put in the gap and the number of failed FAs
- ✓ Fast FP release from the fuel matrix when the exponential temperature rise is observed
- ✓ If (relatively) high temperature are maintained for a long time without reaching the criterion ⇒ leads to significant differences in releases
- ✓ Most of release occurs at the end of transient and the final amount is strongly impacted by the criterion chosen to stop the computation.

MUSA Final Open Workshop, 10-11 May 2023

1. Therr	nal-hydraulic in th	e pool	determinatior	n of unc	ert	tai	nty	/ S	οι	Irc	e
2. Powe	er generation			(2/2)							
3. Heat	transfer			(/							
4. FAs t	ehavior and degra	adation									
5. FP re	lease and transpo	rt									
6. Therr	nal-hydraulic in th	e SFP building									
7. Mater	rial properties										
(Organisation	SA code	UQ-tool	Nb of u.p.	1.	2.	3.	4.	5.	6.	Γ
С	IEMAT	MELCOR	DAKOTA	15				*	*		
E	NEA	ASTEC	RAVEN + Python script	21	*			*	*		Γ
E	nergorisk	MELCOR	DAKOTA	8			*	*			Γ
IN	IRNE	ASTEC	SUNSET	7				*	*		Γ
IF	RSN	ASTEC	R + Python script	18				*	*		
L	EI - ASTEC	ASTEC	SUNSET	12			*	*	*		
L	EI - SCDAP	RELAP/SCDAP	SUSA	25			*	*			Γ
P	SI	MELCOR	DAKOTA	15	*		*	*			Γ
S	STC	MELCOR	SUSA	24	*		*	*	*		Γ
T	US	ASTEC	SUNSET	7				*	*		
				05				-	-		Т

Uncertainty quantification(2/6)

25

Statistics indicators for the uncertainty analyses of the FoMs:

Dispersion plots	Evolution of a FoM for all runs: enables the visualization of the spreading of the results
Minimum, maximum values Mean median standard deviation	At given transient times (generally the ending time) or as a function of time
Cumulative density function (CDF), probability density functions (PDF)	At given transient times (generally the ending time)
Quantiles	Wilks formula: considering the number N of runs performed, we have the probability β (confidence level) that more than a fraction γ (probability content) lies between the min – max values \Rightarrow For a two-sided tolerance interval, a probability content and a confidence set to 95% and 95%, the minimum number of code runs is approximately 100

MUSA Final Open Workshop, 10-11 May 2023

Uncertainty quantification (6/6)

Conclusions:

- Due to the ending time selected, the computation stops during a fast temperature and FP release increase. The statistical analysis at the final time can be very different from that performed during the long-lasting transient.
 Analysis of the whole sequence, and not only the final time step, is more meaningful
- ▶ Use of the Wilks formula require some constrains [Porter, 2019] that are not met in SFP calculations:
 - ✓ code uncertainties are quantified and minimized
 - ✓ no calculation failures
 - ✓ all input parameters relevant for code results are considered
 - ✓ distribution of uncertain input parameters is well known
 - ⇒ UQ performed in WP6 cannot be considered as quantitative
- > Even if not quantitative, uncertainty propagation enables:
 - ✓ to quantify the spreading of SA code responses when varying some input parameters
 - ✓ to see how the dispersion evolves through the transient and if a phenomenon gives rise to spreading
 ✓ to see that the variability in FP release timing coming from the UQ is relatively small when compared to the
 - variability between reference computations of all participants, indicating that u.p. and/or models are missing

MUSA Final Open Workshop, 10-11 May 2023

29

	Sensitivity Analysis (1/6)
Statistics indicators for the uncertainty analyses of the Fo	oMs:
Correlation coefficients: Pearson (values) Spearman (ranks)	Statistical correlation between the u.p. and the FoMs: a correlation coefficient close to 1 (resp1) indicates a positive (resp. negative) linear dependence At given transient times or as a function of time
Scatter-plot of FOMs vs. input uncertain parameters	At given transient times
Simple (linear) and Polynomial regressions	
Advanced feature selection techniques	stepwise backward elimination, stepwise forward selection, and LASSO regularization
MUSA Final Open Works	shop, 10-11 May 2023 30

Main outcomes in WP6.2 & WP6.3

Sensitivity study on the SAM parameters:

- Determine a safe domain for injection time and mass flow rate
- Which flow rate and when to prevent cladding failure?

	Code used	Injection time (before failure)	Water flow rate	N. cases
ENEA	ASTEC 2.2.0.1 ASTEC 3.1	2 ÷ 14 h	0.5 ÷ 2.0 kg/s	20
INRNE	ASTEC 2.2.0.1	1 ÷ 16 h	1.0 ÷ 2.0 kg/s	12
IRSN	ASTEC	8 ÷ 12 h	1.0 ÷ 2.0 kg/s	10
LEI-A	ASTEC 2.2.0.1	0 ÷ 8 h	1.0 ÷ 2.0 kg/s	19
LEI-R	RELAP5/SCDAPSIM	0 ÷ 0.5 h	0.5 ÷ 2.0 kg/s	11
SSTC	MELCOR 2.2	5.9 ÷ 17.9 h	0.7 ÷ 5.0 kg/s	9
TUS	ASTEC 2.2b	3 ÷ 15 h	1.0 ÷ 2.0 kg/s	8
MUS	A Final Open Workshop, 10-11 May	2023		37

Phenomena significantly different
from those that occur in reactor
scenarios [SOAR NEA 2015]:

Uncertainties database for SFP (3/5)

EAs stared in starsus rasks	 Not axisymmetric geometry 	Sensitivity study	
and the walls of the storage	Radiative heat transfer in SFP geometry	Sensitivity study	
cells may incorporate neutron-	 Significant ≠ of radioisotopic inventory between FAs 	-	⇒ For most of these
	 Neutron-absorbing material 	Uncertainty Quantification?	pnenomena, the
FAs contained in a large structure	 3D flow pattern 	Sensitivity study	quantification can
	 Stratified configuration 	-	the propagation of
Much lower decay power	 T° rise slower than in the reactor case: can affect chemical interaction 	Uncertainty Quantification?	input uncertainties since:
	 Large amount of non-condensable gas: can affect condensation and vaporization process 	Sensitivity study	 Input uncertainties are not properly quantified
At atmospheric pressure, surrounded by air	 A oxidation rate of Zr cladding in air or steam/air mixtures 	Uncertainty Quantification	 There is no suitable modelling
	 Wider range of atmosphere composition: can affect FP release, especially Ru 	Uncertainty Quantification?	modeling
Generally no containment, the	 Importance of the gap inventory for the radiological consequences 	Uncertainty Quantification?	43

Uncertainties database for SFP (5/5) **Conclusions:** Participants have listed the u.p. available to the user in the SA codes and • filled the table with the names of the u.p., their description and their probability density function (PDF) - Usually, it was extracted from the reactor table • 5 tables have been elaborated with all PDF provided and the list of participants that have used these PDF for the UaSA For some u.p., uncertainty distributions provided by the partners are • different ⇒ Additional and substantial work would be necessary to determine why different PDF have been provided and if important uncertain parameters are missing ⇒ It must be kept in mind that some uncertainty sources can not be accounted with the probabilistic propagation Final Open Workshop, 10-11 May 2023 45

	RC
Input parameters	
Radionuclides	Sr90, Cs137, Cs134, Ru106, Ce144, Sr89, Ba137m, Ru103 (Coindreau, 2020 b). Release kinetics computed by the SA code
Ecosytems	Not specified
Population	Adult
Exposure scenario	Not specified
Meteorological conditions	Not specified
Distance	1 - 5 - 25 km
Period	10 d - (1 y)
Output parameters	
Dose	Total Effective Dose Equivalent (TEDE)

3rd General MUSA Project Meeting, 27-29 June 2022

			In-R	eactor Applicatio
#	Partner	NPP	Scenario(s)	SAM
1	BelV	PWR-1000	LBLOCA	
2	CIEMAT/UNIPI	PWR (Surry)	SBO	
3	CNPRI	HPR-1000	LBLOCA	
4	ENEA	PWR-900	SBO	
5	ENSO	PWR 4-Loops	LT-SBO at Low P	
6	EPRI	PWR (Surry)	ELAP w/o SAM ELAP+SAM	AC restored at RPV failur
7	GRS	KONVOI	MBLOCA+SBO	
8	IRSN	PWR-900	SBO+Loss of aux. FW	Sump flooding, CFVS
9	KAERI	APR-1400	C-SGTR by SBO	
10	KIT/Framatome	KONVOI	MBLOCA w/o SAM MBLOCA+SBO MBLOCA+SAM	CFVS
11	PSI	PWR-1100	SBO+SGTR	SG re-flooding
12	SNERDI	CAP-1400	LOCA+SBO	
13	TRACTEBEL	PWR-1000	SBO	Cavity flooding+CFVS

In-Reactor Applications

			#	SA Code	U&S Tool	#UPs	#FoM	#Calcs. for UQ
			1	MELCOR	URANIE			
#	Partner	NF	2	MELCOR	DAKOTA	24	3	93
1	BelV	PWR	3	ASTEC	SUNSET	5	8	100
2	CIEMAT/UNIPI	PWR (4	MELCOR	DAKOTA	8	1	130
3	CNPRI	HPR-	5	PELAP/SCDAP	11142.0	10	26	124
4	ENEA	PWR	0	RELATIOODAT	Dethew	10	20	500
5	ENSO	PWR 4	6	MAAP	Python	232	12	500
			7	AC2	SUSA	81	10	100
6	EPRI	PWR (8	ASTEC	SUNSET,	43	12	100
7	GRS	KON			Python			
8	IRSN	PWR	9	MELCOR	DAKOTA	6	4	300
9	KAERI	APR-	10	ASTEC	KATUSA	18	6	900 (300*3)
10	KIT/Framatome	KON	11	MELCOR	DAKOTA, Python	17	2	100
			12	MAAP	DAKOTA			
11	PSI	PWR	13	MELCOR	Python	15	6	111
12	SNERDI	CAP-	1400	LC	CA+SBO			
13	TRACTEBEL	PWR-	1000		SBO		Cavity floodi	ing+CFVS ⁸

#SA CodeU&S Tool#UPs#FoM#Calcs.fcPartnerNi1MELCORURANIE11BelVPWR.2MELCORDAKOTA24393CIEMAT/UNIPIPWR (CNPRI4MELCORDAKOTA81130CNPRIHPR. ENSO5RELAP/SCDAPIUA2.01926124ENSOPWR 46MAAPPython23212500DB in technology/scenarios/UQ approaches/21100100DB in technology/scenarios/UQ approaches/ (strength/weakPreliminary insights into Ammgmt.Cross-comparison might "substantiate" some options!		Partner BelV CIEMAT/UNIPI CNPRI ENEA ENSO	NF PWR PWR (HPR- PWR	# 1 2 3 4 5	SA Code MELCOR MELCOR ASTEC MELCOR	U&S Tool URANIE DAKOTA SUNSET DAKOTA	#UPs 24 5	#FoM 3 8	#Calcs. for UQ 93 100
Partner Ni 1 MELCOR URANIE BelV PWR 2 MELCOR DAKOTA 24 3 93 CIEMAT/UNIPI PWR (4 MELCOR DAKOTA 8 1 100 CNPRI HPR- 5 RELAP/SCDAP IUA2.0 19 26 124 ENSO PWR 4 6 MAAP Python 232 12 500 DB in technology/scenarios/UQ approaches/ 14 100 100 Preliminary insights into Ammgmt. Cross-comparison might "substantiate" some options!		Partner BelV CIEMAT/UNIPI CNPRI ENEA ENSO	NF PWR- PWR (HPR- PWR	1 2 3 4 5	MELCOR MELCOR ASTEC MELCOR	URANIE DAKOTA SUNSET DAKOTA	24 5	3 8	93 100
BelVPWR2 3MELCORDAKOTA24393CIEMAT/UNIPIPWR (44ASTECSUNSET58100CNPRIHPR- 55RELAP/SCDAPIUA2.01926124ENEAPWR 66MAAPPython23212500DB in technology/scenarios/UQ approaches/0410100DB in technology/scenarios/UQ approaches/ (strength/weakPreliminary insightsinto Ammgmt.Cross-comparison might "substantiate" some options!		BelV CIEMAT/UNIPI CNPRI ENEA ENSO	PWR- PWR (HPR- PWR	2 3 4 5	MELCOR ASTEC MELCOR	DAKOTA SUNSET DAKOTA	24 5	3 8	93 100
CIEMAT/UNIPIPWR (4ASTECSUNSET58100CNPRIHPR- 54MELCORDAKOTA81130ENEAPWR 65RELAP/SCDAPIUA2.01926124ENSOPWR 46MAAPPython23212500DB in technology/scenarios/UQ approaches/0110100DB in technology/scenarios/UQ approaches/ (strength/weakPreliminary insights into Ammgmt.Cross-comparison might "substantiate" some options!		CIEMAT/UNIPI CNPRI ENEA ENSO	PWR (HPR- PWR	3 4 5	ASTEC MELCOR	SUNSET DAKOTA	5	8	100
CNPRI ENEAHPR- FWR4MELCOR MAPDAKOTA81130ENEAPWR5RELAP/SCDAPIUA2.01926124ENSOPWR 46MAAPPython23212500DB in technology/scenarios/UQ approaches/000000Preliminary insights into Ammgmt.Cross-comparison might "substantiate" some options!1010		CNPRI ENEA ENSO	HPR- PWR	4 5 I	MELCOR	DAKOTA	0		
ENEAPWR5RELAP/SCDAPIUA2.01926124ENSOPWR 46MAAPPython23212500DB in technology/scenarios/UQ approaches/101010Preliminary insights into Ammgmt.Cross-comparison might "substantiate" some options!		ENEA ENSO	PWR	5 1			0	1	130
ENSO PWR 4 6 MAAP Python 232 12 500 DB in technology/scenarios/UQ approaches/ (strength/weak Preliminary insights into Ammgmt. Cross-comparison might "substantiate" some options!		ENSO	FWR		RELAP/SCDAP	IUA2.0	19	26	124
DB in technology/scenarios/UQ approaches/ (strength/weak Preliminary insights into Ammgmt. Cross-comparison might "substantiate" some options!		ENSU		6	MAAP	Python	232	12	500
DB in technology/scenarios/UQ approaches/ … (strength/weak Preliminary insights into Ammgmt. Cross-comparison might "substantiate" some options!	DD		PWR 4	7	100	CHEA	04	10	400
KIT/Frametome KON II WELCON Python II 2 100	Pre Cro	3 in techno eliminary oss-comp	ology/s insight arison	scei s ii mi	narios/UC nto Ammo ght "subs	2 approa gmt. stantiate	aches e" sor	ne optio	ength/weakness
	4	KIT/Framatome	KUN	12	MAAD	DAKOTA			
12 WIAAF DANUTA		201	DIA/D	12		DANUTA	45		

NUGENIA 2019 Forum				
FISA 2019				
EUROSAFE 2021 Forum				
SNETP 2021 Forum			C&D Number	re
NESTet Conference 2021		INIUSA		13
FISA 2022				
SNETP 2023 Forum				
G M Te	eneral presentat lain Communicat echnical Present	ions at Conferences and mee ion Events ations at Conferences	etings 20 8 17	
	joint planned		7 +3 + ERMSAR	
	rticles on scientif joint planned	ïc journals	8 (+) 4 +2	
	Final Ope	n MUSA Workshop, 11 May 2023	12	

Phebus FPT1: UQ/SA-codes used for U&S-quantification

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

SA code	Uncertainty tool	SFP design	Building model	Number of UPs		
DAKOTA	MELCOR	BWR FU-4	No	15		
DAKOTA	MELCOR	BWR FU-4	Yes	8		
DAKOTA	MELCOR	BWR FU-4	No	15		
0111057	10750		X	-		
SUNSET	ASTEC	BWR FU-4	Yes	1		
SUNSET	ASTEC	BWR FU-4	Yes	12		
SUNSET	ASTEC	BWR FU-4	Yes	/		
SUNSET	ASTEC	BWRF0-4	Yes	n.a.		
SUSA	RELAP/SCDAP	BWR FU-4	No	25		
SUSA	MELCOR	BWR FU-4	Yes	24		
RAVÉN	MELCOR	BVVRFU-4	Yes	25		
R + Python script	ASTEC	BWR FU-4	Yes	18		
PAVEN + Python script	ASTEC	BWR FU-4	Vos	21		

Major Pillars

9

MUSA outcomes, a sound basis

- Input deck uncertainties DB
- Deep insights into methodologies: strengths & drawbacks
- Put-in-place tools & associated expertise
- Open issues out of MUSA reach
- Most important ... "an uncertainty community"

Innovation to be brought on-board in every regard

- Open issues resolution in methodologies
- Consortium composition
- Applications
-

	Conceptual Structure
WP1	COORDINATION & MANAGEMENT
WP2	METHODOLOGY
WP3	APPLICATIONS
WP4	EDUCATION & TRAINING
WP5	DISSEMINATION & COMMUNICATION
	10

		_				
				Expres	sions o	f Interests
	Organization	Country	Contact Person	Organization	Country	Contact Person
	Bangor U.	UK	W. Villanueva	KTH	Sweden	P. Kudinov
	BELV	Belgium	A. Malkhasyan			S. Bechta
	CIEMAT	Spain	L.E. Herranz	LGI LEI NINE PSI RUHR-UB	France	D. Meyer
	ENEA	Italy	F. Mascari		Lithuania	V. Vileiniskis
	Energorisk	Ukrania	S. Sholomitsky		Italy	M. Cherubini
	ENSO	Spain	V. Martínez		Switzerland	T. Lind
	Framatome	France	M. Sagan		Germany	M.K. Koch
	GRS	Germany	S. Beck	SSTC	Ukraine	D. Gumenyuk
		Bulgary	P. Groudey	TRACTEBEL TUS UNIPI	Belgium	S. Yu
		Erance			Bulgary	I. Ivanov
			S Brumm		Italy	S. Paci
		Clavania	S. Druinin	VDU	Lithuania	R. Krikstolaitis
(I NEW ANALY MANA DATE	JSI	Siovenia	M. Leskovar	VTT	Finland	T. Karkela
A STREET, STRE	KII	Germany	F. Gabrielli			

	Expressions of Interests: Beyond EU Borders				
	Organization	Country	Contact Person		
	KAERI.	Korea	B. Lee		
		1104			
		Canada			
		Japan			
				15	

