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Summary 

This deliverable describes the review of the uncertainty quantifications methodologies and tools to be applied 
within the MUSA-project by the partners to assess the uncertainty of different severe accident codes in 
predicting the radiological source term of various reactor designs. It reflects the different tasks of the SubWP3.1 
i.e. 1) main features of UQ tools 2) experience from previous applications of UQ-tools 3) applicability of UQ-
tools to SA and 4) Usability of UQ-tools on large HPC.  

Chapter 2 introduces the main objectives of this deliverable and lists the UQ-tools and severe accident codes 
intended to be applied in MUSA WP4, WP5 and WP6. In Chapter 2, a synthesis of the UQ-methods is given 
based on the information provided by the involved partners. Here, the overall problem, the type of uncertainties 
and how the different UQ-tools treat them as well as the key-features of the UQ-tools, the interface between 
the UQ-tools and the SA-codes are summarized. The synthesis also briefly describes the sampling and 
uncertainty propagation methods, the post-processing capabilities of the different UQ-tools, and the different 
correlations and methods available in the UQ-tools of MUSA for sensitivity analysis.  

The focus of this report is put on the role of uncertainty parameters, their characteristics and data needed to 
be defined for each of them in order to propagate the uncertainties from the input to the output. Different 
couples of uncertainty methods and severe accident codes are going to be used in MUSA by different partners. 
Hence, the existing interface between them, the ways of uncertainty propagation and sampling, the different 
correlations and methods for sensitivity analysis, the different options for post-processing and finally the 
numerical noise of some severe accident codes are discussed to some extent.  The data assimilation tools 
intended to be applied by two partners and the accumulated experience using these methods are discussed 
in a separate chapter. 

An overview of the UQ-tools and the previous experience of the partners applying UQ-tools to different 
numerical tools e.g. neutronic, thermo-mechanic, thermal hydraulic, containment tools, and severe accident 
codes is summarized in a table.  It includes the analysis of thermal hydraulic test facilities (e.g. FEBA), LOCA-
tests (IFA-650.9-10), severe accident tests (e.g QUENCH, Phebus), DBA-sequences (e.g. PWR REA, LB-
LOCA, VVVER-1000 MCP Restart) and few severe accident sequences (MCCI, aerosol behavior, DCH, 
Hydrogen in containment, PWR-900 SA-sequence, PWR SBLOCA SA-sequence). 

The potential of UQ and data assimilation tools of the partners for HPC-applications is also collected.  Finally, 
conclusions are drawn in view of the tasks to be done in MUSA WP4, WP5 and WP6.   

The Appendix 1 of this Deliverable includes the methods, main features, the kind of uncertainty parameters 
(initial conditions, boundary conditions, model parameters, etc.), propagation methods and finally the 
advantages and disadvantages of the UQ-tools to be used in MUSA e.g. SUSA, SUNSET, URANIE,  DAKOTA, 
RAVEN.  In Appendix 2, the extensive and divers experience of the partners using and applying the UQ-tools 
in connection with different severe accident codes for different problems are collected and their relevance for 
the MUSA goals is emphasized. The Appendix 3 summarizes the applicability of the different UQ/data 
assimilation tools in a high performance computer (HPC) environment, which is of paramount importance for 
the MUSA project.  Appendix 4 deals with the data assimilation tools while Appendix 5 describes the noise 
analysis of severe accident codes that may be considered/discussed when performing uncertainty 
quantifications.  
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Abbreviations and acronyms 

 
 

Abbreviation significance 

BE Best Estimate  

BEPU Best Estimate Plus Uncertainties 

CDF Cumulative Distribution Function 

CIAU Capability of Internal Assessment of Uncertainty 

CSA Containment Safety Analyses  

CV Control Volume 

DOE Design Of Experiments  

DST Dempster–Shafer theory 

EM Evaluation Model 

FOM  Figure Of Merit 

FP Fission Product 

GSA Global Sensitivity Analysis 

IUQ Input Uncertainty Quantification 

OAT One at a Time 
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SET Separate Effect Test 

UMAE Uncertainty Method based on Accuracy Extrapolation 
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1 Introduction 

The overall objective of WP3.1 is to review and assess methodologies or tools used by the different partners 
of MUSA for uncertainty and sensitivity analyses when applying severe accident codes for the prediction of 
the radiological source term of different reactor designs and corresponding severe accident sequences. 

As the quantification of uncertainty sources (IUQ) is performed in WP2, the scope of the report is limited to the 
overall review of the different UQ-methodologies to be used by the MUSA-partners in order to quantify the 
propagation of the uncertainties of the input parameters to the output uncertainties of severe accident codes 
(UQ). Therefore, both Severe Accident codes as well as the UQ-tools are given, where the couple of UQ and 
SA-codes can be observed. For uncertainty quantification, these computer codes have been coupled (or will 
be) coupled to probabilistic tools, such as DAKOTA, RAVEN, SUNSET, SUSA, URANIE. Table 1 shows the 
association between the UQ-tools and the Severe Accident codes, where the blue color meaning that the 
coupling is functional and has already been used, and the pink color indicates that the coupling remains to be 
done. 

Table 1: UQ-tools and SA-codes to be used in the MUSA-project 

 DAKOTA  RAVEN  SUNSET  SUSA  URANIE 

 ASTEC      

 AC2      

 MAAP      

 MELCOR      

 RELAP/SCDAP      

The statistical framework used by the different UQ-tools is similar e.g. Monte Carlo i.e. random or LHQ 
sampling, although other frameworks are provided. There is a large experience using these UQ-tools for the 
quantification of the uncertainty of system thermal hydraulic codes, most recently their application is being 
extended to other kind of codes e.g. subchannel codes, core solvers, etc. that are applied in the domain of 
physical phenomena during design basis accidents. The differences between the various UQ-tools lie mostly 
in extra-functionalities.  

It is worth to mention, that the application of UQ-tools to quantify the uncertainty and sensitivity of severe 
accident codes in predicting the radiological source term, as it is foreseen in MUSA, is new and there is only 
limited experience applying these UQ-tools to severe accident phenomena, for example to in-vessel core 
degradation, MCCI, chemistry within the containment, and fission product and transport within containment, 
etc.  

In this report, the following chapters will describe the four tasks of the subWp3.1 in the following order: 

 First of all, a synthesis of the capability and limitations of the UQ-tools, their key-features, models, 
peculiarities, etc. that was extracted from the contributions provided by the MUSA-partners (code 
developers, users) will be described. The MUSA-partner will use these tools in WP4, WP5, and WP6.  
Emphasis will be put on the relevance of the experience of the partners using the UQ-tools in 
connection with severe accident tools for the investigations to be done for PHEBUS (WP4), different 
reactor designs (WP5) and for spent fuel pools (WP6).  

 The main features, models, etc. of each UQ-tools to be applied in MUSA is described based on the 
contributions delivered by the involved partners  in Appendix-1 while in Appendix -2 the experience of 
the partners in using UQ-tools in connection with  SA-codes for dedicated applications is presented.  

 Appendix-3 summarizes the potential of the different couple of UQ/SA-tools for their application in 
large computer clusters (HPC).   

 Appendix 3 describes the applicability of the different UQ/data assimilation tools in a high performance 
computer (HPC) environment, which is of paramount importance for the MUSA project.   

 Appendix 4 deals with the data assimilation tools including modeling issues and capabilities. 
 Finally, Appendix 5 describes the noise analysis of severe accident codes that may be 

considered/discussed when performing uncertainty quantifications.  
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2 Synthesis 

The community of severe accidents does not rely anymore entirely on the use of conservative approach, since 
it showed its limitation in a number of situations. For example, for molten corium concrete  interaction, if we 
consider the basemate breakthrough instant, we might be conservative on the parameters that tend to 
maximize the concrete vertical erosion and lower the heat exchange with the containment atmosphere in order 
to get the shortest breakthrough times in our safety analysis. If we consider the containment failure due to 
pressurization, we would tend to favour the energy release towards the containment atmosphere and favour 
the situations where water can flow onto the corium, for example by favouring homogenous corium 
configurations ensuring sufficient radial erosion of the cavity pit. Other examples like that can be found, 
including examples involving accident management strategies. Because the phenomenology is complex and 
represents a hopefully closed system, being conservative in one aspect may result in being dramatically 
optimistic in another aspect. Consequently, a more realistic called “best-estimate approach” is followed 
worldwide that requires the quantification of the embedded uncertainty of the codes used for safety 
assessment. This safety assessment approach is named Best Estimate Plus Uncertainty. 

Therefore, the seek for realism is a key issue, and uncertainty quantification, as mentioned previously, is mostly 
based on the increased use of different stochastic methods e.g. Monte-Carlo sampling for the quantification of 
severe accident codes that is common praxis since many years for numerical tools applied for the analysis of 
events of the safety level 1 to 3 of the defence-in-depth concept. The principle of this kind of method is the 
sampling of a vector of input parameters characterized by a range of variations and a probability density 
function (pdf), then performing the corresponding calculations, and getting a vector of output of the same size 
as the sample. Alternately, the RAVEN-tool uses an adaptive sampling; not yet applied in connection to the 
severe accident codes.  

An additional argument for the quantification of the code’s uncertainties is the existence of cliff-edge effects in 
the codes, difficult to anticipate due to the high dimensionality of the problem and the time dependencies. A 
major drawback of best-estimate analysis plus uncertainty is the CPU cost of some integral severe accident 
codes needed to simulate a considerable large number of long-lasting severe accident scenarios of LWR,  
required to achieve an acceptable probability content and confidence. Furthermore, it has to be noted that the 
quality of the quantification of the uncertainty of a numerical tool (for any physical domain) also depends on 
the range of the uncertainty input parameters and the selected pdf that the analyst uses for the analysis. Finally 
yet importantly, the overall quality of the uncertainty quantification is determined by the degree of coupling 
(interface) of the UQ-tool and the SA-code, meaning that if it is possible to consider as uncertainty parameters 
not only the initial and boundary conditions but also the model parameters.  

One alternative to alleviate the long-lasting CPU time of the simulation of LWR severe accident sequences 
using integral plant models may be the build-up of surrogate models. It may be possible when a specific 
phenomenon is going to be investigated e.g. MCCI but it may be very challenging to develop a surrogate model 
for a complete nuclear power plant considering all key-phenomena impacting the radiological source term 
prediction.  Moreover, the surrogate models tend to shift the problem if one desires sufficient precision and 
representativeness.  

In view of the huge and cheap available computer (HPC) in Europe and some members states, it seems very 
attractive to explore the use of such computer clusters to  perform in an automatized manner  a huge number 
of simulations with SA-codes including the quantification of the embedded uncertainties and sensitivity analysis 
based on Monte-Carlo sampling methods or alternative methods. The majority of the UQ-tools selected by the 
MUSA-partners belongs to this class of tools.  In the following Chapters, a synthesis of these methods will be 
given.  

2.1 Define the problem 

A vast range of different modelling options can be chosen, listed hereafter with increasing level of complexity 
and physical selectivity: in all cases a temporal window of the accident is defined (with eventually key phases 
identification), corresponding roughly to a panel of physical phenomena to be taken into account as follows:  
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1. All the phenomena likely to occur in the period are modelled and taken into account. No assumption 
is made about the availability of systems, treated as uncertain parameters. Initiator is often determined. 
The uncertainties one might have about physical phenomena are taken into account. This option is 
used when a global synthetic representation of a set of various accidental situation is needed, with 
dynamic representation (for PSA for example). 

2. Choose a given sequence with the whole phenomenology represented from the initiator time; 
assumptions are made on the initiator and the availability of the systems at some point (the point that 
ensures the chosen sequence happens), but also on the uncertainties one might have about physical 
phenomena;  

3. Choose a given sequence with only a part of the phenomenology represented from the initiator time; 
this could be the case for example for a source term calculation with imposed thermal hydraulic 
conditions. In terms of CPU it is less expensive than (2); the assumptions are the same than (2); in 
that case the accuracy and representativeness of the boundary conditions through time (assessed via 
other means) of the computation is at stake; the underlying hypothesis is that there is insignificant 
effect of the chosen FOMs on the rest of the phenomenology of the accident (i.e. no feedback of 
source term related variable on thermal hydraulics for example);  

4. Choose a physical aspect of the accident at a given period of the accident. Use roughly the same 
assumption types as in (2) except that the simulation starts at the onset of the target physical problem, 
which might not be the initiator time. In that case the accuracy of the initial state (assessed via other 
means) of the computation is at stake; this type of assessment is also particularly useful when working 
on Separate Effect Tests (SET). 

At this point, the problem is specified and one has a precise idea of the phenomenon to be examined, and 
consequently the FOMs are known. 

Several additional key issues have to be mentioned: 

a. The limits of the physical modelling; certain effects are not taken into account and might lead to errors; 
this has to be distinguished from epistemic uncertainty, where the modelling exists but is imperfect. 
When adding a new model, there is no guarantee that the uncertainty range remains the same. An 
example for that is the addition in a model of a FP species, which can be filtered differently than in the 
previous version of the model; this is the reason why it shall be considered as a bias or error rather 
than an uncertainty ;  

b. The faithfulness of the representation of the system; it is a compromise between precision and CPU 
cost. When performing UQ, it is implicitly assumed that the development of the input deck has been 
made and qualified to a best estimate geometric, material composition, operational conditions, etc… 
For example, this could be important for the representation of the core, leading to errors in vessel 
rupture if not precise enough and dramatic changes as cliff-edges effects occur when geometrical 
refinement increases. Another example is the refinement of containment description with regard to 
hydrogen explosion.    

c. As faithful as the representation might be, numerical errors remain and may have effects on the results 
of the assessment; if possible the developers of the SA-codes reduce them, but the residual part has 
to be assessed and compared to the uncertainty range one gets at the end of the UQ (hopefully it is 
negligible). 

 

2.2 Definition of the uncertain parameters 

The WP2 of MUSA is extensively dealing with this the selection of input parameters for different reactor 
designs with the goal of perform an uncertainty quantification of SA-codes when simulating a severe 
accident sequence to predict the radiological source term (Beck, et al., 2020).  
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2.3 Description of the uncertain parameters to be fed to the uncertainty 
propagation 

In the framework of MUSA project, the following uncertainties types namely epistemic and aleatory will be 
considered in the uncertainty quantification process by the different UQ-methodologies. Hereafter, a short 
description of these types is given.   

2.3.1 Epistemic uncertainty 

This uncertainty is due to incomplete knowledge. It comes from our limited ability to model the system. This 
uncertainty can be reduced either by improvements in measurement techniques or by increasing our 
understanding of the involved phenomena. It is associated to an imprecise but fixed quantity. The epistemic 
uncertainties are addressed via various frameworks, e.g.  

 Probabilistic: as the uncertain parameter is fixed but unknown, the probability represents some degree 
of belief associated to a given value of this parameter,   

 Interval analysis: the values limiting an interval correspond to a certain degree of belief. In the case of 
possibilities, an upper and lower probability bound characterizes the belief corresponding to the 
degrees of possibility and necessity associated to the interval. The output is therefore two sets of 
distributions, corresponding to a maximum and minimum value of the probabilities. 

2.3.2 Aleatory/Stochastic uncertainty  

It is due to natural or random variability and is inherent to the system being studied. It can be described, but 
cannot be reduced; stochastic uncertainty characterizes a precisely known but variable quantity. The 
probabilistic framework is therefore generally used. When the knowledge of the distribution is incomplete, the 
theory of imprecise probabilities can be used.  

Because of the coexistence of these two types of uncertainties, the use of a single probabilistic framework 
when taking into account the two types is semantically difficult, as probabilities do not have the same meaning 
for both. A nested assessment is therefore often performed (double loop). In Table 2, a summary of the type 
of probabilities of the MUSA UQ-tools is shown. 

Table 2: Available frameworks for the different types of uncertainties 

Code Epistemic Aleatory Comment 

SUSA probabilities probabilities  

SUNSET probabilities/possibilities probabilities In that implementation 
possibilities require the 
checking of monotony 
on the sampled interval 

DAKOTA probabilities/interval Probabilities/imprecise 
probabilities (upper and 
lower probability boxes) 

 

URANIE probabilities probabilities  

RAVEN probabilities probabilities  

 

When assessing the distributions (pdf), for both types of uncertainties, the use of expert judgment is chosen 
as a last resort when no other information is available. The principle of minimal specificity (which states that 
when no information about a variable is known, then each value has to be considered equally probable) is then 
used when little information is available. 

When sufficient information is available, the building of a distribution is then possible based on observations. 
In that case, the tools generally provide methods for the estimation of their fitness to the observations or for 
the estimation of their parameters. Table 3 gives an overview of the main features of the statistical tools of the 
MUSA UQ-methods.  
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Table 3: Statistical tools features for input parameters pdf estimation 

Code Tools Comment 

SUSA probabilities  

SUNSET ( , Kolmogorov Smirnov  Estimation of fitness of a particular 
distribution 

moment method,  non-parametric 
(moving window) method 

Building of distribution  

DAKOTA maximum likelihood method  

URANIE Dedicated module: UncertModeler 

( , Kolmogorov Smirnov  

Estimation of fitness of a particular 
distribution 

Estimation by maximum likelihood, 
moment method,  non-parametric 
(histogram, kernel) methods 

Building of distribution  

RAVEN  No tool available for that part 

 

2.4 Definition of interfaces with SA codes 

In Table 4, an overview about the availability of interfaces between the UQ-tools for initial and boundary 
conditions as well as for model parameters is exhibited.  

Table 4: Statistical tools/ SA codes interface features 

 

 

 

 

  

 

 

 

2.5 Sampling and propagation methods 

All UQ-tools to be used in MUSA have the capability for pure random (Monte Carlo) and Latin hypercube 
sampling (LHS). The determination of the sample size rely mostly on Wilks formula for pure random sampling, 
allowing a certain confidence level associated to a given percentile which can be selected by the analyst. It 
has been empirically noted in the framework of severe accident that LHS sampling converges faster than pure 
random sampling. This is the case when the response is a monotonous function of the input parameters or 
when the response rely only on a limited set of parameters [1][2].  

Code Initial conditions Boundary 
conditions 

Model parameters 

SUSA Yes Yes Yes 

SUNSET Yes Yes Yes 

DAKOTA Yes Yes Yes 

URANIE Yes Yes Yes 

RAVEN Yes Yes Yes 
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The usually available laws for sampling (PDF) are (common denominator between MUSA partners): Bernoulli, 
binomial, Poisson, beta, gamma, exponential, Gumbel, normal, lognormal, chi2, triangular, uniform, 
loguniform, and Weibull. 

2.6 Post-processing 

After the numerous simulations of the severe accident sequence with the MUSA SA-codes is performed, a 
huge number of data is available to be statistically post-processed with the UQ-tools. By means of scripts or 
other tools, the data of interest are extracted from the output or result files of the SA-codes and written in the 
files in the formats needed by the UQ-tools.  

The following statistics indicators are usually provided by all the MUSA UQ-tools: 

 Minimum, maximum values 
 Mean, standard deviation,  
 Cumulative density function,  
 Probability density functions, and 
 Quantiles. 

2.7 Sensitivity Analysis 

Table 5 gives a list of the available sensitivity functionalities of the MUSA UQ-tools. They generally come with 
their associated design of experiments (Stratified, factorial, Sobol, Morris, FAST, etc.). Some of the sensitivity 
measures require an important CPU-cost like global sensitivity analysis. 

The use of sensitivity indexes (correlations) like Spearman require the verification of monotony, which might 
be difficult in case of multiple input variables. 

Table 5: Statistical tools available for sensitivity functionalities  

Code indicator Comment 

SUSA  Correlation indexes: Spearman, Pearson, Kendall, 
Blomqvist 

 Variance based techniques: Standard regression 
coefficient, coefficient of determination, Sobol, 
Scatter plots 

 

SUNSET  Correlations: Spearman, Pearson (included partial) 
 Variance based techniques: Standard multilinear 

regression coefficient, coefficient of determination  
 Scatter plot: no graphical interface, export to CSV 

instead 

Weighted regression available 

DAKOTA  Correlation : Spearman, Pearson 
 Scatter plots 

 

URANIE  Correlations: Pearson, Spearman,  
 Screening (OAT, Morris, etc.),  
 Variance based techniques: Sobol’ indexes (FAST, 

RBD, Sobol/Saltelli) 

 

RAVEN  Multilinear regression coefficients, computed via 
linear regression method 

 Covariance 
 Correlations: Pearson 
 Variance  Dependent Sensitivity 
 Global sensitivity analysis 

Sobol 
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3 Overview of applications of UQ-tools of MUSA-partners  

 

In view of the MUSA main goal i.e. the quantification of the uncertainty of severe accident codes when 
predicting the radiological source term of different reactor designs and selected severe accident sequences, it 
is of paramount importance to summarize the experience of the MUSA-partners at the begin of the MUSA-
project. In Table 6 an overview of the previous experience of the MUSA-partners in applying UQ-tools and 
severe accident codes is given.  

As can be observed there, only the IRSN did an uncertainty quantification of ASTEC using SUNSET for a 
severe accident sequence where the key figure of merit is the radiological source term available at the 
containment for release into the atmosphere. All other UQ-studies were performed for specific SA-phenomena. 
It is worth to mention that another study was devoted to the source term prediction but for Sodium cooled fast 
reactors where the physical phenomena and containment design differs from the ones of LWRs.  

Table 6 : Overview of the application of UQ-tools/DBA and SA-codes of MUSA-partners 

UQ-tool DBA/SA Simulation 
code 

DBA-application 

(relative MUSA relevance) 

SA-Application 

(high MUSA relevance) 

SUSA    

GRS ATHLET-CD / AC2 BEMUSA, Reflood (Premium 
Benchmark) 

PWR REA analysis using 
SUSA 

Phebus FPT1 using COCOSYS-IAM and SUSA, 
PWR Konvoi SB-LOCA using SUSA focused on in-
vessel and containment phenomena including 
radiological source term 

LEI RELAP5/SCDAPSIM  QUENCH-03/-06, Early In-vessel  

LEI ASTEC2.0  In-vessel, containment 

LEI COCOSYS  Phebus FPT2, Containment 

LEI COCOSYS  MISTRA Facility for SA, Atmospheric stratification, 
hydrogen in containment 

LEI ASTEC/CPA  Generic containment (SBLOCA) 

BelV RELAP5/PARCS VVER-1000 MCP-restart 
transient 

 

SUNSET    

IRSN ASTEC2.0  PWR-900 SA radiological source term in case of 
LFW 

LEI ASTEC2.0  Quench-03, Early in-vessel  

DAKOTA    

ENEA MELCOR  SFR source term CSTF-AB1 tests 

ENEA MELCOR  PWR in-vessel phenomena 

ENEA TRACE PWR LB-LOCA  

CIEMAT SPARC-90  Suppression pool in BWR-SBO (FU1 conditions) 

TBL FRAPCON/FRAPTRAN Integral LOCA test IFA-650.9-
.10 

 

TBL MELCOR  MCCI, aerosol behaviour, DCH 

TBL RELAP5 FEBA, PERICLES 

Reflood (Premium 
Benchmark) 

 

URANIE    

KIT ASTEC2.2  Quench-08, early in-vessel PWR 

BELV CATHARE2 V2.5 FEBA, PERICLES  
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Reflood (Premium 
Benchmark) 

RAVEN    

JAEA MELCOR2.2  Coupling under development 
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3.1 Potential of UQ and data assimilation tools for HPC applications 

The Table 7 sums up the potential usability of the UQ-tools within a HPC-framework. Detailed information is 
available at Appendix 3. 

Table 7: HPC availability for UQ and data assimilation tools 

Code HPC usability Comment 

SUSA unknown Windows 

SUNSET yes LINUX, Windows 

DAKOTA yes Linux platform, MPI has to be  
installed 

URANIE yes HPC, Linux-clusters 

MPI, SLURM, SGE, LSF installed 

RAVEN yes Use of PSB queuing system 

MOCABA Potentially easy to implement  

NEMM Not applicable  

 

4 Conclusions 

 
Based on the review of the key-features, functionalities, models of the MUSA UQ-tools (Appendix 1), the 
experience of the involved partners described in Appendix 2 as well as the potential use of the UQ-tools and 
SA-codes in an HPC-environment (Appendix 3), the following conclusions can be drawn: 
 Uncertainty quantification tools (SUSA, SUNSET, URANIE, DAKOTA, RAVEN) 

 Almost all UQ-tools considered in MUSA have similar capabilities and they are developed for 
quite different computer architectures (Linux, Windows) 

 SUSA is based on Excel with an interface to ATHLET and AC2 
 DAKOTA is an open source platform that can be used within SNAP for different codes 

e.g. TRACE, MELCOR in a Linux/Windows environment or outside SNAP using 
dedicated scripts under Linux or Windows. 

 URANIE is an open source statistical platform running under Windows and Linux. A 
Python-based interface has been developed for the ASTEC code, while more efforts are 
needed for other severe accident codes, e.g. MELCOR.  

 RAVEN is an open source general purposed tool with an interface for MELCOR and it 
can be run under Windows and Linux 

 SUNSET is a statistical software strongly linked to ASTEC able to perform uncertainty 
and sensitivity analysis  

 Previous application relevant for MUSA i.e. for severe accidents and radiological source term 
prediction 

 SUNSET was already applied to quantify the uncertainty and sensitivity of ASTEC in 
predicting the radiological source term for a French PWR reactor 

 URANIE was already applied to quantify the uncertainty and sensitivity of ASTEC for the 
prediction of the hydrogen source term during the QUENCH-06 and -08 tests 

 DAKOTA was already applied to quantify the uncertainty and sensitivity of MELCOR 
predictions for the hydrogen production in a PWR core, for the source term CSTF-AB1 
test, and the in-pool fission product retention in a BWR-SBO 

 SUSA was already applied to quantify the uncertainty and sensitivity of ASTEC and 
COCOSYS for the analysis of the PHEBUS FPT1 and FPT2 experiments, respectively, 
and of RELAP/SCDAPSIM for the QUENCH-03 and -06 tests 
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 Experience applying UQ-tools to SA-codes covering the full SA-sequence (in-vessel, ex-vessel, 
containment) to predict the radiological source term is limited 

 IRSN performed the uncertainty quantification for ASTEC using SUNSET tool for a LOF-
sequence in PWR  

 GRS experience in performing U&S-analysis for a severe accident SBLOCA using SUSA and 
ATHLET-CD/COCOSYS focus on both in-vessel and containment issues including source term. 

 
 Experience of MUSA-partners in HPC-applications of UQ/SA-codes for the uncertainty quantification of 

SA-sequences in NPPs ranging from the initiation up to the radiological source term 
 IRSN explored the use of HPC for the uncertainty quantification of ASTEC using SUNSET tool 
 KIT is exploring the use of a large HPC cluster (ForLHR II) at the Steinbuch Center of 

Computing (SCC) to perform the uncertainty quantification of ASTEC/URANIE for the prediction 
of the radiological source term for a German PWR  

 
 

 Data assimilation tools (MOCABA, NEMM) 
 MOCABA application to severe accidents will be done for the first time in connection with 

ASTEC in MUSA. 
 NEMM is a new tool under development for severe accident applications. Hence, no experience 

exist on the field of severe accidents. 
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1 SUSA (GRS)  

In deterministic safety analyses (DSA) for nuclear power plants (NPPs), it has become common practice to 
apply best estimate computer codes for calculating postulated accidents in a realistic and not in a conservative 
way. If a best-estimate code is used in combination with realistic input data, it is generally required (IAEA, 
2009) that relevant epistemic (lack of knowledge) uncertainties which may affect the computational result (e.g., 
the peak cladding temperature in a loss of coolant accident) shall be considered and that their influence on the 
result shall be quantified [1]. There are several sources of epistemic uncertainty which may influence a 
computational result. Important sources are the model formulations implemented in a computer code. They 
are mostly based on a scattering of measurements or may be rather simplified so that the level of predictive 
accuracy of a model – even a validated model – may not be precisely known.  

Further uncertainty sources are numerical solution algorithms, which commonly include approximations and 
simplifications somehow affecting the result, the initial and boundary conditions of the application case, plant 
specific data and measurement errors [1].  

Intuitively the most appropriate method to account for the uncertainty sources of a computational result and to 
get a quantification of their influence is the Monte Carlo (MC) method. It considers a range of values instead 
just one value for each uncertain input parameter of the computer code. Each value selected for a parameter 
is combined with a value selected for each other uncertain parameter and supplied as input to corresponding 
computer code runs. Based on the sample of values finally provided for a computational result, a quantification 
of the uncertainty of the result is obtained by applying statistical methods [1].  

An extra sensitivity analyses or, more precisely, an uncertainty importance analysis is supplemented to the 
uncertainty analysis to identify those uncertain input parameters, which mostly contribute to the uncertainty of 
a computational result (Hofer 1999). It provides information on where to improve the state of knowledge in 
order to reduce the (epistemic) uncertainty of the computational result most effectively [1].  

The development of SUSA started mid-1980s. Since then, SUSA has been constantly improved mainly 
according to the needs in the field of deterministic (DSA) and probabilistic (PSA) safety analyses. The approach 
implemented in SUSA for considering uncertainties is acknowledged worldwide und applied in licensing 
processes in France, USA, Korea and Lithuania. In the project ‘Best Estimate Methods – Uncertainty and 
Sensitivity Evaluation (BEMUSE)’ of OECD NEA (2003 -2011), where different methods for uncertainty and 
sensitivity analyses were applied, most of the participating organizations applied the approach developed at 
GRS and implemented in SUSA. 

 

1.1 Description of the method 

SUSA is developed to facilitate the performance of uncertainty and sensitivity analyses of computational results 
based on the MC method, [2]. SUSA is an important part of the GRS code system for safety analyses of nuclear 
power plants (NPPs). It provides support to quantify input uncertainties in terms of probability distributions and 
to specify associations between input uncertainties in terms of correlations or other measures and functions. 
For Monte Carlo simulation, the simple random and the Latin Hypercube sampling procedures are available. 
To prepare and launch computer code runs, a selection of code interfaces is implemented. Rather comfortable 
are the interfaces to selected codes applied in the field of safety analyses of NPPs. However, in principal, 
SUSA can be coupled to any code. Many options exist for quantifying the uncertainty of a computational result 
and for performing a sensitivity analysis. SUSA combines well established methods from mathematical 
statistics with a comfortable graphical user interface (GUI). The GUI guides through the main analysis steps, 
re-quests input data where necessary, checks for input errors, performs data transfers and performs all other 
actions up to the final representation of results. 
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1.2 Description of main features 

The GUI of SUSA is written in Visual Basic .NET (VB .NET). The main SUSA window consists of a bar of 
menus representing the main analysis steps. Nine different menus are available, Figure 1. The first menu to 
select is the Project menu where a new project must be specified, or an existing project must be selected. 
Selection of the other men-us depends on the analysis status already achieved in the course of a project. 
Selection of a menu usually starts on the left and goes step-by-step further to the right. 

 

Figure 1: SUSA Main window 

 

The menu ‘Input Uncertainties’ must be selected to enter the uncertain input parameters of a project and to 
quantify the corresponding uncertainties probabilistically. In the menu ‘Sample Generation’, a sample of 
different sets of parameter values can be generated. The menu ‘Computer Code Runs‘ is intended for 
launching computer code runs based on the sampled sets of parameter values and for preparing the 
computational results in the format required in the subsequent analysis steps. The menu ‘Uncertainty Analysis’ 
includes options for quantifying the uncertainty of a computational result. Sensitivity indices which help to 
identify the main uncertainty sources of a computational result can be found within the menu ‘Sensitivity 
Analysis’. The menus ‘Scatter Plot’ and ‘Cobweb’ provide additional graphical output supporting the uncertainty 
and sensitivity analysis. The Help menu includes the user’s guide and a tutorial for SUSA. A context related 
online help function is implemented as well. Each menu of SUSA consists of several items or submenus for 
specific tasks to be per-formed within the analysis step represented by the menu. For instance, the menu ‘Input 

Uncertainties’ includes the five items Documentation, Distribution, Dependency, Pro-portions and External 
Data, Figure 1. Selection of the Documentation item is necessary in order to specify and document the 
uncertain parameters of a project. The Distribution item should be chosen to quantify the uncertainties of the 
documented parameters in terms of probability distributions. Selection of the Dependency item is important, if 
dependencies between uncertain parameters are to be quantified. The item ‘Proportions’ offers the possibility 
to categorize selected uncertain parameters as proportions of the same whole which have to sum up to 1. 
Selection of the item ‘External Data’ al-lows for assigning values provided by external sources to uncertain 
parameters.  If an item of a menu or submenu is selected, SUSA opens corresponding dialog windows 
requiring the input data of the respective analysis step. Errors in the input data are immediately communicated 
to the user who must revise the input in order to continue with the analysis step. The calculations of SUSA are 
performed by Fortran program modules automatically loaded when needed during an application. For graphics 
generation, SUSA applies the free Java plotting tool AptPlot, which offers GUI support for a subsequent 
revision of plot defaults. SUSA is available for 32-bit and 64-bit computer systems. 
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1.3 Initial conditions 

 

In principal, SUSA applies to any type of uncertain input parameters. Restrictions are described in section 3.2. 

 

1.4 Boundary conditions 

SUSA can consider boundary conditions in the analysis. 

1.5 Model parameters 

Also model parameters can be consider as “input uncertain parameters” in SUSA. 

 

1.6 Propagation of uncertainties 

1.6.1 Quantification of input uncertainties 

Before input uncertainties can be quantified within SUSA, it is necessary to document and specify the uncertain 
input parameters of the computer code application, Figure 2. If this step is completed, the uncertainties of the 
parameters may be quantified in terms of probability distributions and/or appropriate association measures 
and or functions. There is also the possibility to assign a set of potential values to an uncertain parameter. 

 

 

Figure 2: SUSA Documentation of uncertain input parameters 

Primarily, SUSA expects the uncertainty of a parameter to be quantified as a probability distribution Figure 3. 
To this purpose, a wide range of distribution types is implemented. If the user has no idea which distribution 
to specify, SUSA offers a selection of distributions, which might be appropriate, dependent on what is known 
on the range and on characteristics such as quantiles, expectation, std. deviation, median and k95-factor. If 
the parameters of a distribution are not known, SUSA calculates them from what is known. This is done either 
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analytically or by applying a random search algorithm. Distributions which normally have an infinite minimum 
and/or maximum are truncated at the values indicated as minimum and maximum. The distribution assigned 
to an uncertain parameter can be plotted separately or compared with other distributions in a single diagram. 

Dependencies between uncertain parameters can be specified in terms of association measures, conditional 
distributions, mathematical functions (formulae) and inequalities. Furthermore, full dependency can be 
specified in case the potential value of a parameter is completely determined by the value assigned to another 
parameter, Figure 4. Most of the dependence relationships specified in SUSA can be visualized in the form of 
scatter plots. 

 

 

Figure 3: SUSA Quantification of uncertainties in terms of probability distributions 
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Figure 4: SUSA Quantification of dependence information 

 

Another option available in SUSA for specifying input uncertainties is the characterization of uncertain 
parameters as proportions of the same whole, which sum up to one. This option is useful to handle the 
uncertain branching probabilities of an event tree model in a PSA.  All uncertain parameters, probability 
distributions and dependence structures entered within SUSA are displayed in clear tables which can be 
printed or copied into papers or reports.  More details can be found in [2]. 

1.6.2 Sample generation 

Two procedures are currently implemented in SUSA to sample the values of uncertain parameters, namely 
the simple random sampling (SRS) and the Latin Hypercube sampling (LHS) procedure [3] [4]. The SRS 
procedure provides values randomly sampled from a multivariate probability distribution defined by the 
distributions and dependencies specified as input. The LHS procedure provides values covering the range of 
each uncertain parameter evenly in probability. To this purpose, the range of each parameter is divided into 
equiprobable intervals and, then, one value is selected from each interval. This value is either the median or a 
randomly selected value of the interval. The values selected for each parameter are finally per-muted in order 
to comply with specified correlations between parameters. 

The random values to be generated by SUSA can be controlled by the initial seed value and the selected 
(pseudo) random number generator.  

From the sample values finally generated, SUSA can calculate the sample-related correlation coefficients 
between the uncertain parameters. This information is useful to detect unintentional (spurious) correlations 
due to numerical effects which may affect the results of the uncertainty and sensitivity analysis.  

The results of the sample generation including specified inputs and realized sample-related correlations are 
documented in a text file. 

1.6.3 Computer code runs 

SUSA can automatically start a computer code run for each available set of parameter values. If the computer 
code is run based on an input file, SUSA can automatically generate the input files corresponding to the 
different sets of parameter values and launch the corresponding runs. The computational results to be 
analysed can be selected via a code-specific key file or the address of the results in the corresponding code 
output file. SUSA automatically transfers the selected code results from all runs to a file adequately formatted 
so that the results are accessible in the subsequent analysis steps.  

A special feature of SUSA is that it can automatically prepare a Fortran code template already including the 
code instructions for considering the uncertain parameters and the corresponding sample values. This 
template can be extended by a Fortran code for the actual model (e.g. a sub-model of a complex code, Figure 
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5. For compiling the whole Fortran code, SUSA loads the free GNU Fortran Compiler which is automatically 
in-stalled with SUSA.  

In principal, any computer code can be coupled with SUSA. Comfortable interfaces are implemented for codes 
frequently used for DSA and PSA. 

 

1.6.4 Uncertainty analysis 

 

SUSA provides various options to quantify the uncertainty of a computational result Figure 6. The uncertainty 
analysis can be performed for scalar as well as time/index-dependent computational results. A scalar result is 
just a single value per computer code run, whereas a time/index-dependent result is a series of values over 
time, space, etc. 

 

Figure 5: SUSA Uncertainty analysis option 

 

If the uncertainty of a computational result is to be quantified in terms of quantiles or intervals including a 
proportion of values, SUSA can provide empirical quantiles as well as Wilks’ non-parametrical tolerance limits, 
[5] [6]. These (ß∙100 %; Gamma∙100 %) tolerance limits are often applied in the frame of a DSA using ß = 0.95 
and Gamma = 0.95, [7]. The calculation of Wilks’ tolerance limits is independent of the number of uncertain 
parameters. It just requires a minimum number of runs to be per-formed. For instance, at least 59 runs must 
be performed to get a one-sided (95 %; 95 %) tolerance limit.  
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If the uncertainty of a computational result is to be quantified in terms of a probability distribution, SUSA helps 
to find an appropriate distribution. It can perform the Lilliefors-or Kolmogorov-Smirnoff test which informs on 
the goodness-of-fit of a selected para-metric distribution to the (empirical) distribution of a code result [8].  

SUSA can even build a regression model which is linear in the uncertain parameters and which may serve as 
a so-called response surface. Such a response surface may be of interest, if a quite large set of values for a 
computer code result is to be per-formed and just a single code run is found to be rather time consuming. 
SUSA can per-form Monte Carlo simulation based on the regression model and compare the (empirical) 
distribution of the result with the distribution of the result of the original model. If the regression model provides 
acceptable results, it can be used instead of the original model in order to provide a large data basis for 
quantifying the uncertainty of the computational result.  

Exemplary results of an uncertainty analysis of a time/index-dependent result are shown in Figure 6 and Figure 
7 shows the curves of a time-dependent result from 100 computer code runs. It shows the corresponding two-
sided (95 %; 95 %) tolerance limits. 

 

Figure 6: SUSA 100 curves of a time/index-dependent result 
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Figure 7: SUSA Two-sided (95 %; 95 %) tolerance limits over time 

 

1.6.5 Sensitivity analysis 

The sensitivity analysis with SUSA is performed with the same sample data as already generated for the 
uncertainty analysis. Like the uncertainty analysis, it can be per-formed for scalar as well as time/index-
dependent computational results.  

The following types of correlation-based sensitivity indices are implemented, Figure 8 and Figure 9:  

− Pearson's ordinary correlation  
− Spearman's rank correlation  
− Blomqvist’s medial correlation  
− Kendall's rank correlation  

 

If the sensitivity indices shall be applied to individual parameters, SUSA calculates the ordinary and partial 
correlation coefficient, the standardized regression coefficient and the coefficient of determination (R2) for 
each correlation type, [9] [10]. 

If the sensitivity indices shall be applied to parameter groups, SUSA calculates the multiple correlation 
coefficient for each correlation type.  

Besides correlation-based sensitivity indices, SUSA can calculate the following variance- based sensitivity 
indices for individual parameters:  

− Correlation Ratio from raw and rank transformed data  [11] [12] [13] 
− Sobol’s sensitivity index [14] [15]  

 

For scalar code results (output variables), SUSA can additionally provide association measures from 2x2 
contingency tables [16] or regression coefficients derived from a stepwise (rank) regression. 
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Figure 8: SUSA Sensitivity analysis options 

 

Figure 9: SUSA Pearson's ordinary correlation coefficient as sensitivity measure 
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Figure 10: SUSA Spearman’s rank correlation coefficient as sensitivity measure over time 

 

1.6.6 Scatter &Cobweb Plots 

SUSA can produce scatter and cobweb plots to visualize dependencies and sensitivities. Scatter plots can be 
generated for selected pairs of parameters and/or code results. Figure 11 shows an exemplary scatter plot 
between an uncertain parameter and a computational result. A cobweb plot allows for investigating the local 
sensitivity of a computational result. For instance, it can show how the high or low values of a computational 
result are associated with the values of the uncertain input parameters. A cobweb plot may also help to detect 
sensitivities with respect to combinations of uncertain input parameters. An exemplary cobweb plot is shown 
in Figure 12. Each dotted vertical line in this figure represents an uncertain input parameter except the left-
most one, which represents the computational result. Each polygonal curve links each of the 10 largest values 
of the computational result (e.g. ranks 91-100) to the corresponding set of parameter values represented by 
their ranks. 
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Figure 11: SUSA Scatter plots 

 
 

 

Figure 12: SUSA Cobweb plots 
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1.7 Pros and Cons 

 
PROS: 

SUSA does not have any limitations with respect to the uncertain parameters, the Monte Carlo simulation runs 
and the number of results, which can be considered in an application. The GUI of SUSA is very comfortable 
and supports the user to perform the analysis steps. It checks for input errors, performs data transfers, calls 
the Fortran program modules which are needed for calculation, presents the corresponding results in text form 
and visualizes the results using the tool AptPlot. The uncertain parameters associated with the specified 
probability distribution and dependence information are documented in a table, which can be easily included 
in a paper or report. 

 

SUSA includes comfortable interfaces to selected codes applied in nuclear safety analyses. It also offers an 
interface to any other simulation code running based on an input file. 
 
CONS: 

So far, SUSA is only available for Windows operating systems. Nevertheless, current developments are aimed 
to make SUSA platform-independent. The method implemented in SUSA for considering uncertainties is MC 
simulation. It al-lows for considering either epistemic or aleatory uncertainties. For considering both types of 
uncertainties and for quantifying their common and separate influence, a double loop Monte Carlo (MC) 
simulation can be performed. However, the steps to be per-formed for this kind of analysis are not as 
convenient as for analyses considering just one type of uncertainties. Some analysis steps of a double loop 
MC simulation must be carefully prepared, since they are not automatically performed by SUSA.  

SUSA is not the right tool for considering aleatory uncertainties with features of very low probabilities such as 
the performance of a safety system which mostly operates as intended and fails extremely rarely. In this case, 
MC simulation is not practicable in general, since a huge number of runs is necessary to consider the failure 
of the sys-tem. A tool recommendable in this context is the MCDET tool, which performs a combination of MC 
and Dynamic Event Tree (DET) simulation, [17]. MCDET can also account for an interaction between aleatory 
uncertainties and the sys-tem dynamics simulated by a code. Such an interaction is not supported by SUSA. 
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2 SUNSET (IRSN) 

2.1 Description of the method 

The SUNSET (Statistical UNcertainty and Sensitivity Evaluation Tool) software [18], developed by IRSN, is a 
statistical tool designed for uncertainty and/or sensitivity analysis of mathematical or physical models like 
computer codes.  

It is composed of two parts: 

 A set of statistical computing and interface functions, based on C++ language. 
 A Graphical User Interface allowing the call of statistical functions, in Java language.  

The tool runs on Linux and Windows environment. 

SUNSET is a versatile tool: a study performed is a sequence of actions that the user has to define; the result 
of one action is given as an input of one of the following actions. A sequence of actions might take the form as 
illustrated at Figure 13, where an action is associated to sampling building, which output is filled to the action 
of ASTEC calculation launching, the result of which is filled to the action of post-processing.  

The available SUNSETfunctions cover the following fields : 

 utilies/data management : import/export data to csv format for example, 
 generation of numerical values : design of experiment, sampling, sample aggregation 
 sample propagation, through coupling with codes, or analytic functions defined in SUNSET 
 uncertainty analysis  
 sensitivity analysis 
 evaluation and synthesis of information 
 Multicriteria decision aid 
 Data reconstruction  

 

Uncertainty and sensitivity functions are described herafter. 

 

Figure 13: General presentation of an ASTEC/SUNSET sequence of action for an uncertainty study  
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In the framework of severe nuclear accidents, SUNSET has been coupled to ASTEC code. The general sketch 
of uncertainty analysis, based on Monte-Carlo simulations is presented at Figure 14. 

The first step consists in the modeling of input uncertainties, choosing a probabilistic framework, possibilistic 
framework, or joint frameworks, and preparing the Monte-Carlo sampling. 

Stochastic uncertainties are handled by probability theory. In that case, the probability density represents the 
frequency of a value for given variable. 

For epistemic uncertainties, the user can choose either possibility or probabilistic frameworks, although in this 
latter case, the probability represents a measure of the degree of confidence in the value of a variable, and 
not a frequency.  

The second and third steps are related to the preparation of ASTEC input deck and the launching of 
calculations; this will be discussed in another paragraph. 

The uncertainty analysis techniques implemented in SUNSET are used for probabilistic variables and result in 
the production of estimators like mean, variance, or percentiles. In case of use of possibility framework, the 
sampling leads to a set of intervals and to a pair of data tables containing the extremity of each sampled 
interval. Therefore, each table can be seen as an occurrence of a random variable and the probabilistic 
techniques described below, can also be applied (ie. two cumulative density curves are produced instead of 
one).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 14: General sketch of uncertainty analysis using SUNSET and ASTEC 
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2.2 Description of main features 

2.2.1 Uncertainty analysis 

2.2.1.1 STEP 1: sample generation 

2.2.1.2 Random sampling 

The following methods are available for random sampling: 

Simple random sampling: each occurrence is drawn independently of the previous one; the random sampling 
algorithm implemented in SUNSET is reproducible for a specified seed of the random number generator. The 
seed can be user defined; the necessary size of the sample can be calculated as a function of the statistical 
tolerance limits using a one or two sided estimator based on Wilks formula. 

 
Dependence Modeling: 

The dependences in SUNSET are modelled using a linear correlation of the rank of the variables. The principle 
of such a procedure is first to generate a sample of n values, for each of the variables. The values associated 
with each variable are then permuted according to the correlations on the ranks defined by the user.  

 
Latin Hypercube sampling: for a sample size N of k independent variables, the interval of variation for each 
input variable  where j=1,…,k is divided into N sub-intervals of equal marginal probabilities . Once a sub-

interval has been drawn, it is then excluded for the following drawings. Therefore for each variable, all parts of 
its distribution is represented among the input values once at least and at most. 
 
 
Marginal probability distributions: Sunset provides discrete laws (Bernoulli, binomial, Dirac, uniform discrete, 
Poisson, piecewise-constant empirical cumulative distribution) and continuous laws (beta, gamma, 
exponential, Gumbel, normal, lognormal, chi2, triangular, uniform, loguniform, Weibul) 

2.2.1.3 Interval sampling 

Possibility: a possibility distribution is a set of nested confidence intervals to which “belief” masses are 
attributed. The possibility degree of a given event measures the extent of the plausibility of the event. The 
possibility of an event can be seen as the upper probability degree associated this event. Its dual measure is 
the necessity.  

Necessity: the necessity of an event can be interpreted as the lower degree associated with the probability of 
this event.  

simple sampling method : this method combines the various variables and their values taken at the same level 
of confidence 

random sampling method : (RaFu method)The different variables and their values are combined with random 
confidence levels. 

Possibility distributions: Sunset provides normal, uniform, trapezoidal, triangular, polygonal possibility 
distributions 

2.2.1.4 STEP 4: analysis 

Statistical indicators: average, standard deviation, variance 

Order statistics: percentiles, one or two sided Wilks estimator,  

General functions: cumulative density function estimation, density estimation, fit tests of distributions 
( , Kolmogorov Smirnov 	 

 

2.2.2 Sensitivity analysis 

The following global sensitivity estimators are available in Sunset:  

 regression coefficient, 
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 determination coefficient, 
 correlation coefficient, 
 partial correlation coefficients, 
 simple determination coefficient, and  
 partial determination coefficient. 

 

These estimators measure how much explanatory the uncertain input parameters are for the response, 
presumably a linear function of the input. As an extension to nonlinear problems, the same coefficient is 
available for ranks instead of values, and therefore a ranking function is available. In that case, the response 
is supposed to be monotonous. 

2.3 Initial conditions 

Initial conditions can be set in ASTEC input deck as instructions read from sunset output of uncertain 
parameters. 

2.4 Boundary conditions 

Boundary conditions can be set in ASTEC input deck as instructions read from sunset output of uncertain 
parameters. 

2.5 Model parameters 

Model parameters can be set in ASTEC input deck as instructions read from sunset output of uncertain 
parameters. 

2.6 Propagation of uncertainties 

Please refer to paragraph 2.2.1.  

2.7 Pros and Cons 

On the use of probabilistic framework vs possibility framework, possibility theory allows the representation of 
imprecise information taking into account known information only, unlike probabilistic framework. RaFu method 
allows an efficient numerical treatment for sampling and reduces the computational cost of the propagation 
step. But the counterpart is that one has to verify the monotony of the response over the sampled variables in 
order to get correct results, which can take some time. On the contrary, the use of probability framework is 
straightforward. The counterpart is that the combination of the input pdf of independent variables can lead to 
the phenomenon of compensation, leading to the lesser representation of extreme values. 

On the use of sampling methods for probabilistic framework, the LHS method is based on an independence 
assumption in uncertain parameters; it gives better results than the SRS method in cases where the response 
is dominated by only some of the input variables or if the response is a monotonic function of each of its 
arguments. The estimators obtained from an LHS have less variance than those obtained by SRS. 

Considering sensitivity analysis, the global sensitivity coefficients allow checking the influence of a parameter 
over all the variation interval of the parameters, leading to local information being missed. On another hand, 
local method (not present in sunset) always require a lot of calculations, often not affordable when dealing with 
long duration and full phenomenological severe accident sequence.  
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3 DAKOTA (ENEA, TRACTEBEL, CIEMAT) 

3.1 A BRIEF INTRODUCTION TO DAKOTA 

DAKOTA [19] [20] [21]  is an open source software written in C++ and developed by Sandia National 
Laboratories to perform parametric and uncertainty analysis in a fast and automatic way. The aim of this toolkit 
is to bridge simulation codes and analysis methods for parametric evaluation, uncertainty quantification and 
system optimization. The DAKOTA code was originally conceived to more readily interface simulation codes 
and optimization algorithms, but recently, it includes other iterative analysis methods such as Uncertainty 
Quantification (UQ). DAKOTA can be used for UQ analysis through the SNAP platform [22], where USNRC 
codes (e.g. MELCOR, TRACE, etc.) are already “coupled”, and therefore it makes the setup and analysis more 
“user-friendly”. Its handicap is that its methods and functions for UQ are limited in comparison with DAKOTA 
stand alone.  

However, DAKOTA can be also used “stand-alone” to allow performing UQ analysis with almost every code. 
This option becomes more complicated or tedious, but in contrast, it allows to make used of all its potential for 
the applicability in UQ. As in the case DAKOTA-SNAP, DAKOTA (stand-alone) is able to perform forward 
uncertainty propagation in which probability information for input parameters is mapped to probability 
information for output response functions. However, in addition, it also includes the possibility of performing 
what are denominated “Nested models”, which permit layering one DAKOTA method over another, enabling 
algorithms like mixed epistemic-aleatory or second order UQ. To have more information on DAKOTA the 
following references can be used [19] [20] [21]. 

3.1.1 Description of main features 

Aleatory and epistemic methods are separated in different packages in DAKOTA: 

3.1.1.1 Aleatory methods 

The aleatory UQ methods in DAKOTA include various sampling-based approaches, such as “Monte-Carlo 
Sampling” or LHS. They are both included in the LHS package. The variable distributions allowed are limited 
to normal, lognormal, uniform, log-uniform, triangular, exponential, beta, gamma, Gumbel, Frechet, Weibull, 
Poisson, binomial, negative binomial, geometric, hypergeometric, and user-supplied histograms. What is 
denominated in DAKOTA as “Monte Carlo (MC) sampling” is in fact a Simple Random Sampling (SRS) method 
where samples are chosen randomly according to the specified PDF. 

The LHS method [23] is a stratified sampling technique where each uncertain variable is divided into N strata 
of equal probability (Figure 15), coinciding N with the number of samples n. The length of each of the strata is 
consistent with the PDF that follows the uncertain variable. LHS becomes a more effective technique since, in 
general, fewer samples than SRS are needed for the same accuracy in statistics [4]. 
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Figure 15: LHS strata subdivision for a normal-distributed parameter 

Sampling methods in DAKOTA generate sets of samples based on the PDFs of the uncertain variables which 
then are mapped into sets of response functions. Means, standard deviations, Coefficients Of Variation 
(COVs), and confidence intervals are computed for the response functions. To obtain the responses, the MC 
method is employed, where the samples are paired to obtain a number of code inputs equal to the sample size 
of the uncertain input variables. The pairing process is random when the “MC sampling” method is employed. 
However, if LHS is applied, the pairing process results biased since every row and column in the hypercube 
formed by all the partitions has exactly one sample (Figure 16). Consequently, samples obtained by this 
method cannot be considered independent. 

 

Figure 16: LHS pairing example where X1 and X2 are the sampled variables and the dots are the samples 
sites [21], [24], [20], [19]  

Finally, the code is executed to propagate the input variable uncertainties obtaining its corresponding 
responses which are computed to obtain the desired statistics. In addition, if “random” sampling is selected, 
the non-parametric approach developed by Wilks [5] can be applied. Non-parametric methods do not assume 
any parametric distribution for the probability of the target variable. The Order Statistics (OS) are used to obtain 
the tolerance limits by assuming that the range between the highest and lower statistics follows a beta 
distribution independently of the distribution shape of the aleatory variable (code outputs). This, along with a 
given probability ( ) and confidence ( ) can be derived to obtain the minimum number of cases needed to 
assure such coverage. 

3.1.1.2 Epistemic methods 

The epistemic UQ methods include interval analysis and Evidence theory. In DST, the uncertain input variables 
are modeled as sets of intervals. BPAs are assigned to each interval, indicating how likely it is that the uncertain 
input falls within such interval. Two methods are available, global and local evidence. Both of these methods 
perform DST calculations. The difference is that the local method uses a local optimization algorithm to 
calculate the interval bounds and the global method uses either sampling or a global optimization approach to 
calculate an interval bound. It has to be specify “lhs” for performing a LHS and to obtain the minimum and 
maximum of the samples within each cell as the bounds. 

Mixed aleatory and epistemic methods for problems with a mixture of epistemic and aleatory uncertainties, it 
becomes necessary to segregate the two uncertainty types within a nested analysis. In this nested approach, 
an outer epistemic level selects realizations of epistemic parameters. In the case where the outer loop is 
evidence-based, the approach generates epistemic . and . bounds on aleatory statistics. 

3.1.2 DAKOTA Output 

The response function statistics returned by DAKOTA includes sample means, standard deviations, skewness 
and kurtosis. It also returns confidence intervals on the means and standard deviations of the responses and 
also the Cumulative Distribution Function (CDF) pairs. 

In addition to obtaining statistical summary information of the results, correlations are also supplied. Four types 
of correlations are returned in the output: simple and partial “raw” correlations, and simple and partial “rank” 
correlations. The simple raw correlation coefficients are Pearson’s correlation coefficients. Partial correlation 
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coefficients are similar to simple correlations but adjusting for the effects of the other variables. The rank 
correlations in DAKOTA are obtained using Spearman’s rank correlation. 

3.2 CIEMAT METHODOLOGY APPLIED TO DAKOTA   

3.2.1 Description of the method 

The Best Estimate (BE) approach has been gaining momentum in the nuclear safety community as a means 
to achieve more realistic calculations than the original conservative approach applied for decades. However, 
a single BE calculation needs to be somehow complemented so that the calculation scatter due to input and 
code uncertainties is comprehensively quantified. During the last decades, many methodologies have been 
developed for quantifying calculation uncertainties. They can be classified into two main groups: probabilistic 
and deterministic approaches. 

The BEPU methodology employed by CIEMAT in the framework of the MUSA project is based on the BEPU-
CSA methodology [25]. It is a method originally developed for high-fidelity Containment Safety Analyses (CSA). 
However, as it presents a generic structure based on the Regulatory Guide 1203 [26], it can be applied to 
other kind of analyses such as severe accidents. The codes employed are the MELCOR code for modeling 
and calculation of the severe accident phenomena, and the DAKOTA tool for the statistical analysis. 

 

3.2.2 Methodology Basis 

The BEPU-CSA methodology is structured into two main sections, namely “Best Estimate Modeling” and 
“Accuracy Assessment”. It has to be pointed out that only uncertainties (no numerical errors nor model biases 
are considered) will be considered during the accuracy assessment, which is the main goal of the MUSA 
project. 

The BEPU-CSA methodology has been built around three main principles: 

a) Expert judgment will be limited. Instead of a subjective Parameter Identification and Ranking Table 
(PIRT), all the uncertain parameters identified will be initially considered in the analysis. This might be 
soften if unforeseen difficulties show up during the application. 

b) The distinction between aleatory, epistemic and imprecise uncertainties [27]. 
c) Calculation time has to be also considered to assure the methodology pragmatism. This can be heavily 

condition the BEPU-CSA application given the long transient time in case of severe accidents. 
Therefore, either the EM (Evaluation Model) developed for the analysis or the full uncertainty 
parameters consideration (a) or both, will be consolidated in such a way that the methodology 
becomes computationally affordable. 

3.2.3 Best-estimate modelling 

It is divided in three main phases, being these the description phase, focused on the scenario and the plant 
that will be analyzed; the decision phase, where the modeling strategy and the code that will be used is 
depicted; and finally, the modeling phase, which describes the Evaluation Model (EM) setup process. 

3.2.3.1 Description 

Description of the transient is essential for choosing the code to be employed in the calculation and the 
modeling strategy to be followed. Different phenomena might be present during different accident sequences 
and different time spans in the same accident, which are also dependent on the plant design. For instance, in  

A conceptual pre-analysis is recommended at this stage. By identifying key expected phenomena, the accident 
could even be phased [28], which might be useful for the analysis. The definition of FOMs is to be done in this 
stage of the analysis. Modeling strategy might to some extent (i.e., nodalization) be affected by FOMs nature, 
either integral or instantaneous, or either volume average or local. 

3.2.3.2 Decision 

This phase concerns codes suitability to address severe accident simulation. Even though, in principle most 
popular codes (i.e., MELCOR, ASTEC, MAAP, AC2, etc.) are mature enough, modelers should make it sure 
that they match what requires a full-scope SA simulation (i.e., phenomena considered, proper integration, 
numerical stability, etc.). From this standpoint, the MELCOR code [29] is a reference code in SA simulation, 
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with a sound coverage of Source Term phenomena. Nevertheless, it should be highlighted that fission product 
(FP) chemistry is not dealt with during FP transport, particularly iodine chemistry modeling is incomplete and 
outdated. This drawback along with the impossibility to capture 3D phenomena that might affect hydrogen 
distribution, for instance, should be kept in mind when modeling SA scenarios. Anyway, the code may be 
considered qualified for the MUSA purpose.  

3.2.3.3 Modeling 

Since the goal is to perform a BE analysis, the EM has to be as precise and detailed as possible, and that 
means that plant data needed to feed the code has to be equally detailed. The source of these data usually 
come from a huge amount of plant schematics, diagrams, and other related documents. To properly face the 
difficulties in dealing with that amount of documents, the EM setup process is divided into two practical steps: 

a) The construction of plant CAD model is the first step in the modeling phase [25]. In order to organize 
the plant data available, it is highly recommended to start setting-up a high-fidelity CAD model. Since 
many important parameters are difficult to gather (containment free volume, heat sink surfaces, 
geometric distribution, etc.), joining all the data in one digitalized document allows to achieve it with 
no major problems. The data gathered from the CAD model is then used to setup the Control volume 
(CV) parameters. A mesh assessment should be performed to assure that nodalization is adequate 
for predicting key phenomena. Heat structure data, such as the wall thickness, heights or surfaces, 
are also extracted from the CAD model, as well as the flow connections between components. 
Depending on the scenario to be analyzed, safeguards systems which are assumed to be available 
may also be modeled. 
 

b) The development of the MELCOR EM. The process and recommendations for plant modeling with 
MELCOR for severe accident analyses is depicted in several public documents, but the CIEMAT’s EM 
is based on the documentation extracted from the SOARCA project best practices guidelines [30]. 

3.2.4 Uncertainty Quantification 

An EM will never reproduce real physics since many simplifications and approaches are necessary when 
modeling a SA scenario.  The quantification of uncertainties may be structured in three phases Identification, 
Quantification, and Interpretation.  

3.2.4.1 Identification 

The response (FOM) uncertainty is produced by a combination of different uncertainty and error sources. 
Experimental data; plant data; model inadequacy; numerical schemes; geometry simplification; and user effect 
are the main uncertainty and error sources. 

Aleatory uncertainties come from the natural variability of a phenomenon (i.e. droplet sizes from a flashing 
liquid, or number of resultant neutrons from a fission reaction) and measurements (instrument accuracy). In 
the latest, it may be differentiated between instrument calibration, which add a bias (error) to the measurement; 
and the instrument precision, which adds dispersion (randomness). In some cases, there may be lack of 
information for a correctly characterizing of a aleatory uncertainty (i.e. only the mean is known or the PDF 
parameters are based on a sample set instead of the whole population). In such situations, the uncertainty of 
this parameter may be considered an imprecise uncertainty.  

Epistemic uncertainties are those produced due to the lack of knowledge. Usually, availability of real plant 
schematics and documentation is not trivial. Hence, the information for plant modeling could be incomplete, 
and incompleteness of data is by definition an epistemic uncertainty. Consequently, these uncertainties may 
affect critical parameters, such as the definition of the free volume and/or heat sink areas. 

Numerical & systemic errors are normally produced due to the lack of control over the code structure, 
inadequacy of physical models used, and/or the complexity of the simulated phenomena. Therefore, code 
errors are related to physical models adequacy (including scale distortions), discretization schemes (spatial 
and temporal), iterative process (residuals), round-off error, and user effect, [27]. As was previously stated, 
errors will be not considered by CIEMAT in the MUSA context. 

3.2.4.2 Uncertain Input Parameters Identification 

For determining uncertain input parameters, the MELCOR models of relevant phenomena for the scenario to 
be addressed will be studied.  Correlation coefficients will not be considered uncertain parameters, since they 
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were used to calibrate the mathematical model to fit real physics, and therefore, they add bias (error) and not 
dispersion to the calculation. 

3.2.4.3 Parameters Uncertainty Characterization 

Ranges and probability distributions are generally used to characterize parameter uncertainties. There are 
different methods to characterize input uncertainties, remarking SAPIUM [31] and part of the SOARCA project 
[32], [33] outcomes. 

When characterizing uncertainties, the case of aleatory uncertainties is clear, since the most appropriate 
mathematical representation for them is the classical probabilistic framework. Therefore, if the information is 
complete, uncertainty of parameters can be characterized with an adequate PDF applying the Classical 
Probability Theory (CPT), whose basis can be found in almost every textbook related to statistics and 
probability, such as in [34]. The data for characterizing the parameter uncertainty will be extracted from 
experiments, in a similar way as was performed in the SAPIUM project [31]. 

However, it is not common to have all the information needed available. Or maybe, there are different sources 
of information for a parameter in particular. In these cases, the uncertainty becomes incomplete or imprecise. 
In such situation, the characterization will be driven by the Principle of Minimal Specificity [5], and a method 
based on bounded probabilities (or probability boxes) will be employed. Instead of a single value of probability, 
the parameter uncertainty will be represented by a bound defined by upper and lower probability values [35] 
[36].  

For the case of purely epistemic uncertainties (total ignorance about the value(s) of a parameter), there is no 
other way but applying the expert judgment for estimating the uncertainty range. The uncertainty 
characterization in these cases will be driven by the Principle of Insufficient Reason [37] by assigning a uniform 
distribution to it. 

3.2.5 Quantification 

It is proposed to apply the Wilks approach [5] [6][6], [7][5], [6]. In that manner, the number of iterations needed 
will be dependent only on the tolerance and confidence limits established, being for instance, 59 runs to 
establish the 95th percentile at 95-percent confidence (95/95) for one tolerance limit.  

The DAKOTA tool will be used for the statistical analysis. To do that, a coupling between MELCOR and 
DAKOTA becomes necessary. If both codes are used under the SNAP interface [22], this coupling is already 
done by the SNAP itself. However, CIEMAT plans to use DAKOTA in the stand-alone format, since it allows a 
better control over the DAKOTA and MELCOR capabilities. That means that a script to couple these two codes 
is required, and therefore, it has been developed in Python.  

3.2.6 Interpretation 

The application of the Wilks approach by itself only assures a tolerance region of specified content and 
specified probability. However, the influence of each of the input uncertainties in the EM output is still unknown, 
making necessary a sensitivity analysis. Since a “reduced” set of Monte-Carlo iterations has been already 
performed, uncertainty statements and sensitivity measures are available simultaneously for all singled-value 
as well as continuous-valued output quantities of interest from the same variation of input and code 
calculations.  

The Pearson product-moment Correlation Coefficient (PCC) [30] [31] [38] will be employed to observe the 
linear correlation between the FOM(s) and the input parameters. The Spearman’s Correlation Coefficient 
(SCC) [6] will be used to analyze the monotonic correlation between them (a monotonic correlation is 
considered when a perturbation in one of the two parameters implies a change in the other parameter, but not 
necessarily at a proportional rate). 

However, since these two regression coefficients are obtained from a relatively small sample, a values 
analysis will be performed to check its consistency. Confidence Intervals (CIs) will be also estimated to 
consider the so-called “statistical error”. For that, the classical method stated by Student [39] is proposed.  
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3.3 DAKOTA (TRACTEBEL) 

3.3.1 Description  

The uncertainty and sensitivity analysis process using DAKOTA as stand-alone tools is  shown in Figure 17. 
For the applications to multi-physics code package presented in this paper, the defined input uncertainty 
parameter ranges and distributions for each simulation code, as well as the chosen uncertainty analysis 
method and number of samples are defined in the DAKOTA Input File.  

 

Figure 17: The DAKOTA uncertainty/sensitivity analysis process [8]. 

Based on the sampled or assigned values of input uncertainty parameters in the DAKOTA Parameter Files, 
various scripts have been developed to create the simulation code input files, to execute the simulation code 
runs, and to collect relevant calculation results from the simulation code output files into the DAKOTA Results 
Files. The DAKOTA Executable will then perform the requested statistical uncertainty and sensitivity analysis 
and provide the information in the DAKOTA Output Files. 

3.4 DAKOTA toolkit in SNAP (ENEA)  

In the framework of deterministic safety analyses, DAKOTA toolkit is also provided as a plug-in [22] for the 
Symbolic Nuclear Analysis Package (SNAP), which is a graphical user interface designed to support the use 
of USNRC nuclear codes (e.g. TRACE, RELAP, MELCOR, etc.). Using SNAP, it is possible to build the input-
deck in a graphical environment and to have a direct visualization of the code calculated data by using its 
animation capability [40] [41] [42] . SNAP is a suite of integrated applications including a “Model Editor”, “Job 
Status”, the “Configuration Tool” client applications and a “Calculation Server”. In particular, the “Model Editor” 
is used for the nodalization development and visualization and for the visualization of the selected calculated 
data by using its graphical and animation model capability. Through SNAP it is possible to set-up the DAKOTA 
uncertainty analysis [22] and to perform automatically all the steps to apply the probabilistic method to 
propagate input uncertainty. Figure 18 shows a schematic representation of DAKOTA uncertainty analysis 
workflow in a SNAP environment/architecture for MELCOR applications. Figure 19 shows the equivalent 
MELCOR/DAKOTA uncertainty stream done in SNAP. 
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Figure 18: DAKOTA uncertainty analysis workflow for MELCOR code in a SNAP environment/architecture. 

 

Figure 19: MELCOR/DAKOTA uncertainty stream done in SNAP.  

 

 

3.4.1 DAKOTA/SNAP Description of main features 

DAKOTA plugin [22] for SNAP allows to: 
1) Enter the selected uncertain input parameters (together with their range and PDF type); 
2) Select the sampling method (Monte Carlo or Latin Hypercube); 
3) Enter the desired FOMs for the analysis; 
4) Set the final report, automatically generated at the end of the uncertainty quantification analysis, 

which contains the results of the uncertainty analysis application. 

In Figure 18 it is presented the DAKOTA workflow in SNAP coupled with MELCOR code. Starting from the 
reference MELCOR input-deck, the selected uncertain input parameters (together with their range and PDF) 
and the FOMs, DAKOTA samples the input parameters creating a set of N MELGEN and MELCOR inputs. 
The minimum number of code runs N depends on the requested probability content α, the confidence level β 
and the number of FOMs. In case only one FOM is investigated, for the one-sided tolerance interval, the 
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required number of code runs can be found, based on Wilks [5] [6] by solving the following equation with 
respect to N: 

 

 1  (1)

 

If more than one FOM is investigated, for the one-sided tolerance interval, the required number of code runs 
can be found by solving the following equation with respect to N [43]: 

 

 !
! !

1  (2)

 

where p is the number of FOMs. More information on statistical aspects of best estimate analyses can be 
found in [44]. 

 

The different steps necessary to define the uncertainty analyses in a DAKOTA application in SNAP are : 

 

 STEP1: “Edit Uncertainty Configuration/DAKOTA Properties” 

As shown in Figure 20, in the first SNAP Tab of the uncertainty stream, “Edit Uncertainty 
Configuration/DAKOTA Properties”, the sampling process (e.g. number of samples, sampling method, 
etc.) can be characterized and the FOMs for the Uncertainty Application (UA) can be introduced. 

 STEP 2: “Edit Uncertainty Configuration View/Variables” 

In the second SNAP Tab of the DAKOTA Uncertainty Stream configuration, “Edit Uncertainty 
Configuration View/Variables”, it is possible to add the selected input uncertain parameters, Figure 22, 
previously defined in the MELCOR input-deck, and characterizes them. 

 STEP3:“Edit Uncertainty Configuration View/Distribution” 

In the Third SNAP Tab of the DAKOTA Uncertainty Stream configuration, “Edit Uncertainty 
Configuration View/Distribution”, it is possible to quantitatively characterize the input uncertain 
distribution previous defined. In particular it is possible to define the Distribution Type (Normal, 
Lognormal, Uniform, Loguniform, Triangular, Exponential, Beta, Gamma, Gumbel, Frechet, Weibull, 
Histogram) and the distribution parameters that characterize each of them. In Figure 23 is reported an 
example with the triangular distribution. In the right of this Tab it is visualized the Probability Density 
and Cumulative Distribution resulting from the characterization of the input uncertain parameter. 

 STEP 4: “Edit Uncertainty Configuration View/Report” 

In the fourth Tab “Edit uncertainty configuration/Report”, Figure 24, it is possible to characterize the 
report configuration, automatically generated by DAKOTA, and the plot variables in the “Plotted Values 
Table” (Input uncertainty parameter VS iteration index, FOM VS input uncertain parameters, FOM VS 
iteration index). 
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Figure 20: “Edit Uncertainty Configuration/DAKOTA Properties” SNAP Tab. 

 

 

Figure 21: “Edit Uncertainty Configuration/DAKOTA Properties” SNAP Tab, insufficient number of sampling 
warning1. 

 

 

 

                                                      
1 A “Calculated Samples” button is available to the user to evaluate the required number of tasks considering 
the Order, Probability and Confidence selected by the user. The required number of tasks is visualized in the 
“Number of Samples” field. The user can define independently a number of tasks. If the number of tasks, 
selected by the user, is minor than the required tasks a warning message of insufficient sampling is displayed, 
Figure 33. This evaluation is based on the Wilks method [17]. As shown in Figure 32, the Order, Probability 
and Confidence can be selected on the right of the mask in the “Order”, “Probability”, “Confidence” field. 
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Figure 22: “Edit Uncertainty Configuration/Variables” SNAP Tab. 

 

Figure 23: Example of input uncertain parameter distribution representation in the SNAP Tab. 

 

 

Figure 24: “Edit Uncertainty Configuration/Report” SNAP Tab. 
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REPORT: Variate and Response data 

As shown in Figure 18, an initial DAKOTA run is performed using the specified input parameters to generate 
a set of variates for each task. The individual tasks are then performed and the FOMs are extracted from the 
completed calculations. 

The plots present in the DAKOTA automatically generated report are:  

- Input uncertain parameter against iteration index (e.g. Error! Reference source not found.); 
- FOM VS input uncertain parameters (e.g. Error! Reference source not found.); 
- Input uncertain parameter VS another input uncertain parameter. 

It is reported in a tabular form: 

- The value of the response data for each task, for the instants selected; 
- The value of each uncertain parameter for each task. 

REPORT: DAKOTA results  

As shown in Figure 18, a second DAKOTA run was performed using the variate and extracted FOM values to 
obtain the statistical results and a cumulative distribution function for the FOM. DAKOTA also calculates the 
response correlations for the FOM. 

In relation to the DAKOTA statistical results of the FOM, the following information can be found in the 
automatically generated report: 

- Plot (e.g. Error! Reference source not found., Error! Reference source not found. on the right): 
o Cumulative distribution function; 
o Probability density function. 

 
- Tabular (e.g. Error! Reference source not found., Error! Reference source not found.) 

o Statistical results: 
 Min value and the related task; 
 Max value and the related task; 
 Mean value; 
 Median value and the related task; 
 Standard deviation; 
 Coefficient of Variance. 

REPORT: Uncertainty analyses response correlation  

As a result of the uncertainty analysis, DAKOTA [19] [22] [45] [46] computes four response correlation 
coefficients: simple, partial, simple rank and partial rank. The simple coefficient is related to the actual input 
and output data. The simple coefficient r between an input variable x and an output variable y, in n samples, 
is computed using the Pearson’s correlation. It is a measure of the degree of linear correlation between the 
two variables and its value is comprised between -1 and 1. If r<0 the correlation is negative (an increment of x 
leads to a reduction in y), if r=0 there is no correlation between the two variables, if r>0 the correlation is 
positive (an increment of x leads to an increment of y). The partial correlation coefficient is computed similarly 
to simple one but taking into accounts the effects of the other variables. This is useful, for example, if there is 
a strong correlation between two inputs; in this way the correlation of the second input on the output may be 
adjusted after having considered the correlation between the first input and the output [19]. Rank correlation 
coefficients use the ranked data instead of the actual ones. Ranks are obtained by ordering the data in 
ascending order, and are more convenient to be used when inputs and outputs are characterized by sensible 
difference in magnitude; it is possible to understand if the input sample with the lower rank is associated to the 
output with the lower rank and so on [19] [47]. To compute the rank correlation, DAKOTA uses the Spearman’s 
rank correlation that is similar to Pearson’s one but with the ranked data instead of the actual values. If two 
variables are monotonically related, without repetitions, the Spearman coefficient is -1 or +1 (depending if the 
function is monotonically decreasing or increasing), since the ranked values are used. Moreover, Spearman’s 
correlation is less sensitive to possible outlier values of the variables than Pearson’s one. 

Error! Reference source not found. and Error! Reference source not found. show the response correlation 
reported in the automatically generated DAKOTA report for the ENEA CASE 1 and 2 respectively for a selected 
instant. For completeness, as example of time dependence computation of response correlation coefficient, 
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the peak cladding temperature Pearson and Spearman coefficient are reported based on a TRACE [48] 
(USNRC best estimate thermal hydraulic system code) analyses of a double ended guillotine break in a generic 
PWR-900 [45], Figure 25 and Figure 26. 

 

 

Figure 25: Peak cladding temperature Pearson’s simple response correlation coefficient (double-ended 
LBLOCA simulation with TRACE code coupled with DAKOTA for a generic PWR-900) [45] 

 

 

Figure 26: Peak cladding temperature Spearman’s simple response correlation coefficient (double-ended 
LBLOCA simulation with TRACE code coupled with DAKOTA for a generic PWR-900) [45] 

  



Appendix 1: Uncertainty quantification methods (Task 1 and 3)  

www.musa-h2020.eu     34 

 

3.5 Initial conditions 

DAKOTA can treat the code input as an uncertain variable and provide tools for insertion of the sampled values 
in the studied code input files. The freedom provided to the user by the use of scripts permit to generate input 
variables from sampled parameter. For example, DAKOTA samples fuel rod diameters, because those are the 
values affected by the fabrication tolerance, and the script calculates the results thicknesses that the code 
need. Also, the sample can be variables used by a script to generate a skewed axial profile. 

On the specific aspect of case initial conditions, the same user liberty permits to perform sampling both on a 
first initialisation case, then on the test case itself. One example [10] is the simulation of irradiation of a fuel 
rod up to the adequate burnup with a steady-state code before the simulation of an experiment with a transient 
code. This includes the required adaptations of input parameters and the potential rework of the results from 
the initialisation case before passing them to the test case. 

Initial conditions can be used as input uncertainty parameters also using DAKOTA in a SNAP 
environment/architecture. 

3.6 Boundary conditions 

See previous sections. The use of scripting will facilitate the handling of aspects like code coupling.  

Boundary conditions can be used as input uncertainty parameters also using DAKOTA in a SNAP 
environment/architecture. 

3.7 Model parameters 

Model parameters can be treated if they are code inputs. In some cases [11], the studied code has been 
modified to create an additional input which contain factors to multiply the appropriate subcode results and 
consequently apply uncertainties on model behaviour. 

Model parameters can be can be used as input uncertainty parameters if they are code inputs also using 
DAKOTA in a SNAP environment/architecture. 

3.8 Propagation of uncertainties 

DAKOTA is well suited for the non-parametric order statistics by Monte-Carlo sampling of all uncertain 
parameters according to the analyses by Tractebel. Other methods are available: LHS sampling, reliability 
methods, stochastic expansion methods (based on polynomial chaos and stochastic collocation), plus several 
epistemic and mixed aleatory/epistemic methods. 

3.9 Pros and Cons 

3.9.1 probabilistic method to propagate the input uncertainty  

The probabilistic method to propagate the input uncertainty [45] [7], is, in brief, based on a random sampling 
of the input uncertain parameters selected by the user; a set of N code runs having in the input a combination 
of the uncertain parameters is created and solved with the selected code (e.g. MELCOR). Then, it is possible 
to perform the statistical analysis and to characterize, through response correlations, the relationship between 
the selected uncertain input parameters and the FOMs..  

One of main advantages of this method is that, by for example using a non-parametric method, the number of 
code runs does not depend on the number of input uncertain parameters. In addition, it is not necessary a prior 
development of a Phenomena Identification and Ranking Table (PIRT), which is a long process. Each 
uncertain input parameter should be defined by its range of variation and its Probability Density Function (PDF); 
this means that even if the exact value of a parameter is uncertain, some values are more likely to be close to 
the real one than others. The definition of the PDF is one of the most challenging tasks in the application of 
the probabilistic method to propagate input uncertainties. If there is no evidence or information to choose a 
particular PDF, the uniform distribution can be used; in fact, at a fixed range, it assigns the same probability to 
all the values in the range of variation of the parameter. The drawback is that this can lead to a results 
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spreading larger than the one obtained with the use of peaked type distributions. More information about 
deriving parameter PDF can be found in [49]. 

 

3.9.2 Analysis methods 

3.9.2.1 Pure Monte Carlo 

It is a parametric method and therefore, it may be more accurate for estimating the FOMs uncertainty. 
However, its accuracy will depend on the sample size, which will be proportional to the number of input 
variables combined to obtain the FOM responses. It would make this method computationally expensive when 
several input variables are considered. 

3.9.2.2 Wilks approach 

It is a non-parametric method, and therefore, there is no dependency between the sample size needed and 
the input variables considered. Sample size will depend on the coverage and confidence needed in the 
analysis. Since this method relies on more general statements, like that the FOM distribution is continuous, it 
is less accurate, but conservative, than parametric methods. 

3.9.2.3 Interval analysis 

Interval analysis method could be considered non-probabilistic since every uncertain variable is treated as an 
interval. Extreme values for each interval are used to compute the uncertainty bands of FOMs. Every possible 
combination between variable values are considered. Therefore, the cases needed in the analysis will be 
dependent on the input variables so that 2n code runs will be necessary (where n is the number of input 
variables). It could make the UQ analysis computationally expensive if many of them are considered. 

3.9.2.4 Evidence theory 

This method is similar to that the interval analysis since the uncertain variables are defined by intervals. The 
difference is that every variable could be defined by several intervals, making it even more expensive (in code 
runs) than the interval analysis. In fact, interval analysis may be considered a particular case in DST, where 
all the input variables are define by a unique interval. Its advantage is that no subjective considerations are 
stated about the input variables uncertainty. 

3.9.3 DAKOTA limitations 

The need of extra scripts (pre- and post-processing) 

Nested analysis limited by the DAKOTA structure. For instance, double Wilks cannot be performed neither 
apply Wilks approach to the outer loop.  

DAKOTA output is limited to that described in 3.1.2. If other test and/or analysis is desired, brute output data 
have to be used for computing it. 

3.9.4 User oriented features or functionalities, user friendliness     

Pros: 

-  Choice between graphical user interface and input files. DAKOTA can be controlled by command line 
and introduced in scripts. 

-  Good access to the data to perform pre and post treatments. This permits to study complex 
calculations with several codes involved. 

-  Free 

-  Versatility: Large and varied set of methods available. 

-  Good management of parallel computing. 

-  Community to help users. 

-  Can manage large numbers of random variables and code responses (e.g. several hundred 
responses for a transient problem). 

- Sensitivity analysis is automatically performed. 
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Cons: 

-  Knowledge of scripting needed. It is up to the user to manage the transfer of data to and from the 
studied code (even if tools are provided to help).  
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4 URANIE (KIT, BELV) 

4.1 Description of the method 

 

URANIE [50] [51] is an open source platform for uncertainty and sensitivity analysis developed by CEA within 
the ROOT analysis Framework [52] [53]. In addition to the classical uncertainty and sensitivity studies, URANIE 
has also the capability to perform surrogate model generation and calibration, reliability analysis, optimisation 
and construction of design-of-experiment. In this sense, it is similar to other open source platforms such as 
DAKOTA, Open-TURNS, and UQLab.  

The URANIE platform is written in C++ and it runs in multiple platforms (UNIX, Windows) and it can be used 
via a C++ (CINT), Python (PYROOT) or Ruby interface. URANIE takes profit of many ROOT-features as an 
advanced data visualisation tools, a hierarchical machine independent and highlight compressed object-
oriented database and many statistical analysis tools (RooStats, RooFit, etc).  A simple data access is provided 
in the formats: flat ASCII file, XML. JSON, internal ROOT format (TTree) and to SQL-database. Important for 
the UQ of severe accident codes is the parallel capability of URANIE which is based on different mechanisms 
e.g. simple fork processing, shared-memory distribution (pthread), splint-memory distribution (mpirun) and 
GPU.  A complete documentation can be found in the URANIE site [54]. 

Key features of the URANIE platform are accessibility, modularity, genericity and universality. Modularity is 
assured by the modular organisation so that only needed modules can be loaded for a specific analysis while 
Genericity means that the platform can handle codes or functions as black-boxes using non-intrusive methods 
and hence it can be applied to all scientific fields. Universality means that the platform can export data and 
surrogate models in many formats (ASCII, XML, JSON) for use within URANIE or by other platforms. Finally, 
a peculiarity of URANIE is the fact that both samples and results are stored in a common object, called 
TDataServer, which is the centre of all the statistical treatments performed by the users [50]. 

In Figure 27, the main URANIE modules and their interdependencies are shown. Hereafter, a brief description 
of selected modules is given: 

 DataServer is the core module for data handling and first statistical computation e.g. mean, standard 
deviation, min, max, normalization, correlation matrices, and quantile. It also define variables using 
pre-defined statistical laws e.g. uniform, Gaussian, exponential, triangular, etc. and it contains all the 
necessary information about the variables of a problem (names, units, probability laws, etc.). Finally it 
creates plots and import/export data in different formats e.g. ASCII, XML, JSON.  The DataServer 
library defines the TDataServer object which contains all information about the uncertain variables for 
the use in a UQ-study.  

 ReLauncher: it is the interface to code or/and function handling i.e. it applies an analytical function or 
an external simulation code on the content of a TDataServer. The content can either result from a 
design-of-experiments generated using the Sampler module, or can be loaded into the TDataServer 
from an external source. The ReLauncher can deal with code, Python functions, C++ interpreted and 
compiled functions.  

 Sampler: it is used to create the design- of-experiments that represents the starting point for many 
analyses. It uses the attributes of the TDataServer, which are random variables. This module consist 
of the following main categories: stochastic and deterministic design. Examples for stochastic design 
are e.g. Simple Random Sampling (SRS), Latin Hypercube Sampling (LHS), One-At-a-Time Sampling 
(OAT), etc. Some examples for deterministic designs are e.g. Sobol sequence (quasi Monte Carlo), 
sparse grid sampling, space filling design.  

 UncertModeler: This module examines how well a sample of data agrees with a given distribution as 
its population with goodness-of-fit techniques.  

 Sensitivity: it allows to perform sensitivity analysis of the response y with respect to the inputs x in 
order to rank the inputs with respect to their impact on the outputs of a code or a function. Several kind 
of methods are available e.g. local finite differences, regression methods (Pearson values, Spearman 
ranks), screening (OAT, Morris, etc.), Sobol indexes (FAST, RBD, Sobol/Saltelli).  

 Modeler: It is the module for surrogate model generation in order to reproduce the behavior of data 
provided. Some of the available models are: polynomial regressions, generalized linear models, , k-
Nearestr neighbor, Kernel methods, Artificial Neural Networks (ANN), chaos polynomial expansion, 
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Gaussian processes e.g. kriging with gpLib. All these models can be exported in different formats 
(C++, fortran, PMML) for later on use.  

 ReOptimizer: Different types of optimization problems e.g. minimization of Single Objective (SO) or 
Multi Objectives (MO), optimization of parameters with impact on an objective and find possible 
constrains on these parameters. For it, many tools are available such as  Minuit, Opt++, NLopt and 
Vizir.  

 Reliability:  

Figure 27:  The URANIE Platform: Main Modules and their interdependencies (green) and the external 
dependencies (light purple boxes) [55]  

 

 

4.2 Description of main features 

 

The general flowchart for uncertainty and sensitivity analysis using URANIE is depicted in Figure 28. According 
to [10] , the main steps for the uncertainty propagation are listed here: 

 Step A: Problem specification,  
 Step B: Quantification of uncertainty sources, and  
 Step C: Propagation of uncertainty sources.  

If the view is focus on general sensitivity methods, additional steps are added e.g.: 
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 Step B’: Quantification of sources (inverse methods, calibration and data assimilation) and 
 Step C’: Sensitivity analysis, prioritization.  

 

Figure 28:  The URANIE Platform: General Steps for Uncertainty and Sensitivity Analysis [55] 

 

In the problem specification, Step A in Figure 29, the computer code is selected i.e. ASTEC (f) and for it the 
uncertain parameters (x) to be considered in the analysis of an specific accidental sequence are chosen 
together with the parameter range (i.e. max and min values as well as the reference value) and the 
corresponding probability density function (pdf). The selected uncertain parameters are a subset of the input 
parameters, initial conditions, boundary conditions, etc. of the specific SA-code. It means that the other 
parameters not considered as uncertain (x) are represented by d so that the model / code is f(x,d). The output 
variables of interest are given by y= f(x,d). Finally, the quantities of interest performing an uncertainty 
propagation can be classified as follows: 

 Location: mean (), Min, Max, Median, Quantile 
 Dispersion: standard deviation (), Variance (²), Range (Max-Min), coefficient of variation ()  
 Probability density functions (PDF), cumulative density function (CDF). 

In the Step B, appropriate PDFs for each uncertain parameter needs to be determined or generated. For it, 
experimental data if available need to be evaluated and applying a mathematical algorithm (e.g. FFT) the 
proper PDF for the uncertain parameter of interest can be computed[11]. If no experimental data is available 
for the uncertain parameter of interest, a pdf e.g. uniform function is selected based on expert judgement.  For 
example, if experimental data is available, the PDF can be obtained by different data fitting methods e.g. 
parametric (maximum likelihood, moment method,  and non-parametric (histogram, kernel) methods,  and 
statistical (Chi-squared ², Empirical Distribution Function (EDF) e.g. Kolmogorov-Smirnov D) tests or 
Bayesian/Bootstrap methods if the data sets are small.  
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Figure 29:  The URANIE Platform: General Steps for Uncertainty and Sensitivity Analysis [55] 

 

In the Step C, the propagation of uncertainty sources from the input into the output is done considering the 
following sub-steps:  

 URANIE sub-step “Design of Experiments (DoF)”: All the selected uncertainty parameter with the 
corresponding values (reference, MAX, MIN) and the PDFs e.g. are random sampled for example 
based on the Monte Carlo sampling considering the interdependences of the “uncertain variables”  
and the probability content as well as the level of confidence. According to the Wilk’s formula and 
depending if a one-side or two-side analysis is going to be done, a minimal number of cases i.e. 
code calculations (in URANIE: “Points of DoE”) will be generated by the tool.  In order to perform 
N runs, each uncertain parameter is varied N-times independently of each parameter as long as 
the uncertain parameters are not correlated. The values for each parameters are then obtained 
by e.g. the random Monte Carlo sampling method. Finally yet importantly, it has to be decide if a 
“point” analysis or a time dependent analysis is going to be done.  

 The SA-code will be run for N-times considering the values of the uncertainty parameters 
determined by the random Monte Carlo sampling either in sequential or in a parallel mode. This 
steps is normally automatized using Python scripts. As next, the output of the SA-code predicted 
for the variables of interest need to be extracted from the output files of the SA-codes. This process 
is also automatized using Python scripts, which will generate a data file in the format expected by 
URANIE for a subsequent treatment.  URANIE offers different surrogate models (linear, 
polynomial, artificial neural network, kriging) to reduce the computational times of the code 
evaluations if needed.  

 Finally, the analysis of the quantity of interest using URANIE statistic capabilities is done to obtain 
for example the uncertainty band of quantities of interest during the accident progression.  

 A sensitivity analysis of the uncertain parameters (input) can be done afterwards  regarding the 
variables of interest (target variables) using parametric or non-parametric correlations e.g. 
Spearman’s rank correlation or the Pearson’s product momentum correlation, etc.  

 

4.3 Initial conditions 

The initial conditions are specified in the input deck of the SA code and transferred to URANIE. For example, 
in the case of ASTEC (see Chapter 4 in the Appendix 2) such transfer is performed through a Python interface.  

 

4.4 Boundary conditions 

The boundary conditions are specified in the input deck of the SA code and transferred to URANIE. For 
example, in the case of ASTEC (see Chapter 4 in the Appendix 2) such transfer is performed through a Python 
interface.  
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4.5 Model parameters 

The model parameters are specified in the input deck of the SA code and transferred to URANIE. For example, 
in the case of ASTEC (see Chapter 4 in the Appendix 2) such transfer is performed through a Python interface.  

4.6 Propagation of uncertainties 

Please, see Paragraph 4.2 in the Appendix 1. 

4.7 Pros and Cons 

The main advantages of the URANIE platform is the fact that it is an open source platform under continuous 
development at CEA that includes a lot of statistical tools not only for uncertainty propagation and sensitivity 
analysis but also for optimization, etc.. Since it is developed under Linux and it includes parallel capabilities 
(to be tested) is very attractive for the application in connection with severe accident codes to analyze severe 
accident progression, which per se are CPU-time intensive compared to the system thermal hydraulic codes.  
 
One of the main discouraging issues for beginner user of URANIE is that it requires the installation of external 
packages, which have to be installed before URANIE is installed. Some of them are mandatory (ROOT,  
Cmake) since URANIE is built as a layer on top of ROOT in order to take profit of key features such as C++ 
on-the-fly compiler (CLING), Python automatic transcription, access to SQL-databases, optimal and efficient 
model handling, visualization, etc.  Other external packages are optimal e.g. CPPUnit, OPT++, FFTW, NLopt, 
PCL, MPI, CUDA.  
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5 RAVEN (UNIROM1, JAEA) 

5.1 Description of the method 

The RAVEN (Risk Analysis Virtual Environment) software is open-source and can be downloaded from 
GITHUB [56]. The RAVEN development has begun in early 2012 at the Idaho National Laboratory (INL) to 
perform parametric and probabilistic analysis based on the response of complex system codes, in order to 
quantify the safety margins of safety-related events. Nowadays RAVEN is a multi-purpose probabilistic and 
uncertainty quantification platform, capable to be coupled with any system code. 

RAVEN development is performed under a strict Software Quality Assurance process. Actually, it is qualified 
as NQ1-Lvl. 2. The overall goal was to conceive a tool to enable Risk Informed Safety Margin Characterization 
(RISMC): 

1. Evaluating risk (uncertainty propagation) 
2. Understanding risk (limit surface, ranking, sensitivity, data mining) 
3. Mitigating risk (optimization) 

RAVEN has been developed in a highly modular and pluggable way in order to enable easy integration of 
different programming languages (i.e., C++, Python) and, coupling with any system code [12]. It is capable of 
investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube 
sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, 
separating regions of the input space leading to system failure, using dynamic supervised learning techniques. 

As for all PRA software, the capability to control the plant evolution during the simulation is a plus for 
uncertainty propagation. In system safety analysis codes, a similar need is expressed by the implementation 
of the control logic of the plant. As a consequence, the optimization of resources imposes the integration of 
this task under a common project that is RAVEN. Consequently, the plant control logic is simulated by RAVEN; 
this also offers the flexibility to easily implement proprietary control logic without changing RELAP or MELCOR 
source code. 

In summary, from a user prospective, RAVEN is a tool that [57] : 

1. Determines the calculation flow to achieve the most accurate evaluation of risk accounting for 
probabilistic behaviour and uncertainty propagation; 

2. Visualizes simulations results (thousands and more) and provides the data mining capability to deeply 
understand the plant behaviour; 

3. Provides the capability to investigate risk mitigation strategies by suggesting directions and quickly 
assessing impacts. 

The main idea behind the design of the RAVEN framework is the creation of a multi-purpose platform 
characterized by high flexibility with respect to the possible performable analysis. The framework must be 
capable of constructing the analysis/calculation flow at run-time, interpreting the user-defined instructions and 
assembling the different analysis tasks following a user specified scheme. In order to achieve such flexibility, 
combined with reasonably fast development, a programming language naturally suitable for this kind of 
approach was needed: Python [58]. 
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Figure 30: Schematic representation of the RAVEN software [58] 

As can be inferred from above, RAVEN is coded in Python and is characterized by an object-oriented design. 
The core of the analysis performable through RAVEN is represented by a set of basic components (objects) 
the user can combine, in order to create a custom analysis flow. A list of these components and a summary of 
their most important functionalities are reported as follow [59]: 

1. Distribution: In order to explore the input/output space, RAVEN requires the capability to perturb the 
input space (initial conditions of a system code). The initial conditions, that represent the uncertain 
space, are generally characterized by probability distribution functions (PDFs), which need to be 
considered when a perturbation is applied. In this respect, a large library of PDFs is available to choose 
from. 

2. Sampler: A proper approach to sample the input space is fundamental for the optimization of the 
computational time. In RAVEN, a “sampler” employs a unique perturbation strategy that is applied to 
the input space of a system. The input space is defined through the connection of uncertain variables 
and their relative probability distributions.  

3. Model: A model is the representation of a physical system (e.g. Nuclear Power Plant, etc.); it is 
therefore capable of predicting the evolution of a system given a coordinate set in the input space. 

4. Reduced Order Model (ROM): The evaluation of the system response, as a function of the coordinates 
in the input space, is very computationally expensive, especially when brute-force approaches (e.g. 
Monte Carlo methods) are chosen as the sampling strategy. Reduced Order Models could be used to 
lower this cost, reducing the number of needed points and prioritizing the area of the input space that 
needs to be explored. They can be considered as an artificial representation of the link between the 
input and output space for a particular system. It is not particularly indicated for SA applications due 
to the numerosity of cliff-edge effects.  

In the framework of severe nuclear accidents RAVEN has been coupled to MELCOR code by Sapienza 
University of Rome. The general sketch of the process is shown in Figure 30. 

The interface has three main functions [13] : 

1. interpret the information coming from RAVEN; 
2. translate such information in the input of the driven code; 
3. manipulate output data file to create a database. 

To allow RAVEN storing output data coming from MELCOR, a Python output parser has been developed to 
convert the plot binary file generated by MELCOR into a CSV file. To overcome the handling of large datafiles 
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the interface allows to create a CSV file with only variables required by the users. So, it is possible to obtain a 
database that comprises the required variables from all MELCOR packages.  Figure 31 shows the procedural 
framework used for sensitivity and uncertainty analyses. A MELCOR input deck is used as template, the 
chosen parameters are specified as string with special characters. RAVEN can identify such parameters and 
replaces the string with values sampled from a specified distribution. The sampled values are implemented 
into N number and consequently N-MELCOR input decks are generated. Data resulting from simulations are 
stored into a database that can be used to perform statistical analyses. 

 

 

Figure 31: MELCOR-RAVEN coupling interface 

 

5.2 Description of main features 

5.2.1 Uncertainty analysis 

5.2.1.1 Distributions 

RAVEN provides support for several probability distributions. Currently, the user can choose among several 
1-dimensional distributions and N-dimensional ones, either custom or multidimensional normal. 

1. One-Dimensional Probability Distributions: both continuous and discrete distributions can be used. 
Each distribution has a pre-defined, default support (domain) based on its definition, however these 
domains can be shifted/stretched and truncated using the appropriate parameters where applicable. 
The continuous distribution supported by RAVEN are as follow: 

 Beta Distribution 
 Exponential Distribution 
 Gamma Distribution 
 Laplace Distribution 
 Logistic Distribution 
 LogNormal Distribution 
 LogUniform Distribution 
 Normal Distribution 
 Triangular Distribution 
 Uniform Distribution 
 Weibull Distribution 
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RAVEN currently supports 3 discrete distributions. In the following paragraphs, the input 
requirements are reported: 

 Bernoulli Distribution 
 Binomial Distribution 
 Geometric Distribution 
 Poisson Distribution 
 Categorical Distribution 
 Markov Categorical Distribution 

 
2. N-Dimensional Probability Distributions: allow the user to model stochastic dependences between 

parameters. Thus, instead of using N distributions for N parameters, the user can define a single 
distribution lying in a N-Dimensional space. The following N-Dimensional Probability Distributions are 
available within RAVEN: 

 Multivariate normal distribution 
 ND Inverse Weight interpolation distribution 
 ND spline interpolation distribution 

5.2.1.2 Sampling strategies 

The sampler is probably the most important entity in the RAVEN framework. It performs the driving of the 
specific sampling strategy and, hence, determines the effectiveness of the analysis, from both an accuracy 
and computational point of view. The samplers, that are available in RAVEN, can be categorized into three 
main classes: 

1. Forward: collects all the strategies that perform the sampling of the input space without exploiting, 
through dynamic learning approaches, the information made available from the outcomes of 
calculations previously performed (adaptive sampling) and the common system evolution (patterns) 
that different sampled calculations can generate in the phase space (dynamic event tree). In the 
RAVEN framework, several different “Forward” samplers are available:  

 Monte Carlo 
 Stratified 
 Grid Based 
 Sparse Grid Collocation 
 Sobol Decomposition 
 Response Surface Design of Experiment 
 Factorial Design of Experiment 
 Ensemble Forward Sampling strategy 
 Custom Sampling strategy 

Among these, the Monte-Carlo sampling approach is one of the most well-known and widely used 
approaches to perform exploration of the input space. The main idea behind Monte-Carlo sampling is 
to randomly perturb the input space according to uniform or parameter-based probability density 
functions. 

2. Dynamic Event Tree (still under development for MELCOR): this sampling strategy is designed to take 
the timing of events, in transient/accident scenarios, explicitly into account. In practice, a single 
simulation is spawned and a set of triggers is added to the system code control logic. Every time a 
trigger is activated (one of the CDF thresholds in the grid is exceeded), a new set of simulations 
(branches) is spawned. Each branch carries its conditional probability. In the RAVEN code, the triggers 
are defined by specifying a grid using a predefined discretization metric in the mode input space. 
RAVEN provides two discretization metrics: 1) CDF, and 2) value. Thus, the trigger thresholds can be 
entered either in probability or value space. 
 

3. Adaptive: provides the possibility to perform smart sampling (also known as adaptive sampling) as an 
alternative to classical “Forward” techniques. The motivation is that system simulations are often 
computationally expensive, time-consuming, and high dimensional with respect to the number of input 
parameters. Thus, exploring the space of all possible simulation outcomes is infeasible using finite 
computing resources. 
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5.2.1.3 Statistical Post-processing 

The RAVEN framework provides the capability to store and retrieve data to/from an external database. 
Currently RAVEN has support for only a database type called HDF5. Starting from the database, different kind 
of data objects (PointSet, HistorySet, DataSet) can be obtained to perform statistical post-processing, which 
is one of the most assessed ways to investigate the impact of the intrinsic variation of the input space among 
several figure of merits. 

Currently, the following types are available in RAVEN: 

 BasicStatistics 
 ComparisonStatistics 

The BasicStatistics post-processor is the container of the algorithms to compute many of the most important 
statistical quantities. It is important to notice that this post-processor can accept as input both PointSet and 
HystorySet data objects, depending on the type of statistics the user wants to compute.  

Currently the scalar quantities available for request are: 

 expectedValue: expected value or mean 
 minimum: The minimum value of the samples 
 maximum: The maximum value of the samples 
 median 
 variance 
 sigma: standard deviation 
 percentile 
 variationCoefficient 
 skewness 
 kurtosis (also known as Fisher’s kurtosis) 
 samples: the number of samples in the data set used to determine the statistics. 

The matrix quantities available for request are: 

 sensitivity: matrix of sensitivity coefficients, computed via linear regression method 
 NormalizedSensitivity: matrix of normalized sensitivity coefficients 
 covariance: covariance matrix 
 pearson: matrix of correlation coefficients 
 VarianceDependentSensitivity: matrix of sensitivity coefficients dependent on the variance of the 

variables 
 

The ComparisonStatistics post-processor is capable to compare the obtained results with experimental results 
(or with another calculation) through a numerical quantification of the differences. The available methods for 
the comparison are: 

 CDF area difference (Minkowsky L1 metric) 
 PDF area difference 
 difference PDF metric [60] 

These functions are useful especially for the validation of new models or codes. 

5.2.2 Sensitivity analysis 

Global sensitivity estimators described in the previous paragraph can be used also to perform sensitivity 
analyses in RAVEN. 

5.2.3 Dynamic PRA 

The PRA analysis needs an approximation to this distribution for selected consequence variables. A way to 
achieve this goal is an Event Tree approach. In dynamic PRA analysis, Conventional Event Tree sequences 
are run simultaneously starting from a single initiating event. The branches occur at user specified problem 
times and/or when an action is required by the operator and/or the system, creating a deterministic sequence 
of events based on the time of their occurrence. One of the disadvantages of this method is that the 
timing/sequencing of events and system dynamics is not explicitly accounted for in the analysis. In order to 
overcome these limitations a “dynamic” approach is needed. The Dynamic Event Tree (DET) technique brings 
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several advantages, among which is the fact that it simulates probabilistic system evolution in a way that is 
consistent with the severe accident model. The dynamic PRA, in general, and the Dynamic Event Tree 
methodologies in particular, are designed to take the timing of events explicitly into account, which can become 
very important especially when uncertainties in complex phenomena are considered. 

5.3 Initial conditions  

Initial conditions can be set in MELCOR2.2 input deck, which is text-based and can be perturbed by RAVEN. 

5.4 Boundary conditions 

Boundary conditions can be set in MELCOR2.2 input deck, which is text-based and can be perturbed by 
RAVEN. 

5.5 Model parameters 

Model parameters and other options can be set in MELCOR2.2 input deck, which is text-based and can be 
perturbed by RAVEN. 

5.6 Propagation of uncertainties 

Uncertainty propagates from random input sampling, input deck perturbation, MELCOR2.2 execution and 
finally to output data analysis. 

5.7 Pros and Cons 

RAVEN is a very flexible instrument ready to carry out the UQ for SA codes as MELCOR and MAAP. It is open 
source, a large number of statistical instruments are available, and the dynamic PRA analysis is a useful tool 
for the evaluation of the SA transients. 

Actually, a GUI is not available, but the input is in XML format and then it is easy to develop a GUI capable to 
generate the XML input. 
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1 SUSA (GRS, LEI, BELV) 

1.1 Experience of the GRS applying SUSA with a SA-Code (GRS) 

SUSA can be used in any application area. It has been mainly applied with the codes of the GRS code system 
AC2 (ATHLET, ATHLET-CD und COCOSYS) as well as with the codes TESPA-ROD, QUABOX/CUBBOX, 
EVNTRE and ASTEC. Moreover, SUSA is part of the GRS program system SUnCISTT for considering 
uncertainties in the frame of criticality analysis. Outside GRS, SUSA is  mainly used in combination with the 
codes RELAP5, MAAP (version MAAP-CANDU) and DYN3D. 

The approach implemented in SUSA for considering uncertainties is acknowledged worldwide und applied in 
licensing processes in France, USA, Korea and Lithuania. In the project ‘Best Estimate Methods – Uncertainty 
and Sensitivity Evaluation (BEMUSE)’ of OECD NEA (2003 – 2011), where different methods for uncertainty 
and sensitivity analyses were applied, most of the participating organizations applied the approach developed 
at GRS and implemented in SUSA. 

BETMI-2 calculation (Benchmark Exercise on the TMI-2 Plant): The simulation for the surge-line break with 
simultaneous loss of offsite power (Sequence 2) has been complemented by an uncertainty and sensitivity 
analysis [1]. In the study 25 uncertain parameters have been considered. These parameters were related to 
the thermal hydraulics, the boundary conditions, the oxidation modelling, the formation and relocation of 
metallic as well as ceramic melt, and some additional parameters. Altogether 100 calculations have been 
performed, for which the input parameters have been determined by simple random sampling. The analyses 
comprised of 10 scalar and 12 time-dependent variables. 

For the scalar output variables the cumulative distribution function together with the corresponding two-sided 
95/95 tolerance limits have been calculated, while in case of time-dependent outputs the two-sided 95/95 
tolerance limits have been determined for the whole simulation time. For the sensitivity analysis the 
Spearman`s Rank correlation coefficient has been considered.  

The time point of the vessel failure is one of the main results. The simulated results are shown in Figure 1. The 
lower and upper uncertainty limits are 3523s and 4684s, respectively. The left side of the Figure illustrates the 
cumulative distribution function as well. The right side of the figure shows the sensitivity analyses result: the 
heat conductivity of the ceramic melt, the relocation velocity of the metallic melt, the interfacial friction within 
the rod bundles, and the containment pressure proved to be the most influential input parameters. 

 

Figure 1: Time point of the vessel failure 

Another important aspect of a severe accident is the hydrogen production. The simulated results concerning 
the cumulated hydrogen production are depicted in Figure 2. As it can be seen the uncertainty range is 
relatively large, especially after the melt relocation into the lower plenum has started. The most dominant input 
parameter is the containment pressure: the lower the backpressure, the larger the steam production and thus 
stronger the cladding oxidation.  
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Figure 2: Cumulated hydrogen production 

 

Another example of an UaSA performed by GRS is the Uncertainty and Sensitivity Analysis on the Iodine 
Model in the Containment Code COCOSYS. 

Taken from [2] the uncertainty and sensitivity analysis of a COCOSYS-AIM calculation on the iodine behavior 
in the containment of PHEBUS test FPT1 delivered useful and detailed information on the accuracy of the 
iodine results in the sump, the gas phase and the potential source term.  

The determination of the iodine source term to the environment under severe LWR accident conditions requires 
an accurate calculation of the iodine behavior in the containment. In order to investigate the iodine source term 
predictability by COCOSYS-AIM an uncertainty and sensitivity study on a post-test, multi-compartment 
calculation on PHEBUS test FPT1 was made. 93 uncertain input and model parameters including 56 iodine 
reaction rate constants were considered. The study was performed in two steps with 208 variation runs each.  

The calculated statistical tolerance limits of the sum of all airborne iodine species masses in containment, 
which is a measure for the potential iodine source term, was found to be in average a quotient of 6.2 below 
and a factor of 5.3 above the best-estimate value. Only in the first hours of test FPT1, when the airborne iodine 
consisted mainly of CsI aerosol, the uncertainty range was significantly smaller. 

The findings are qualitatively valid for reactor accident analyses as well, but larger uncertainties have to be 
assumed since the conditions in FPT1 were more controlled than in a severe reactor accident.  

In the early phase of an accident when CsI aerosol is the dominant airborne iodine species in the containment 
the uncertainty of the calculated potential iodine source term is relatively small. Therefore, an improvement of 
the aerosol model in COCOSYS seems unnecessary at the moment.  

In the late accident phase when CsI has settled and the iodine source term consists of the species I2, organic 
iodides and IOx the uncertainty of the source term is rather large. This confirms the experience made with 
numerous applications of COCOSYS-AIM and other codes.  
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Figure 3: I2 concentration in gas shown (209 selected runs; reference calculation of the I2 
concentration in gas (red) and experimental values (blue marks)); RI concentration in gas (209 

selected runs; reference calculation of the RI concentration in gas (red) and experimental values 
(yellow marks)) 

It is further shown that only 5 of the 93 uncertain parameters investigated have an essential impact on the 
uncertainty of the potential iodine source term in the late phase. Four of them are used in different AIM sub-
models: (1) radiolytic formation of I2 from iodide in the sump, (2) iodine/silver reactions in the sump, (3) 
adsorption of I2 onto paint in the gas phase and (4) radiolytic formation of CH3I in the gas phase and the fifth 
parameter is an input parameter generally provided by a primary circuit code: the release rate of I2 from the 
primary circuit into the containment. By a well-directed improvement of these AIM sub-models and a reduction 
of the uncertainty of the input parameter the accuracy of the iodine source term calculated with COCOSYS-
AIM can be significantly improved. 

In the international programs OECD-BIP, OECD-STEM and OECD-THAI aspects of the above mentioned 
reactions are also investigated experimentally. Within the national THAI program a test on the iodine/silver 
reaction in the sump is planned. The results of these projects form a valuable data base which can be used 
for the revision of the uncertain AIM sub-models.   

 

1.2 Modelling of experiments using best estimate approach (LEI) 

QUENCH experiment modelling and evaluation of the uncertainties. The full text of application of the best 
estimate approach for modelling of QUENCH-03 and QUENCH -06 experiments could be found in the article 
[3]. In this article the QUENCH-06 experiment analysis was provided using RELAP/SCDAPSIM code and 
SUSA computer tool. Uncertain input parameters used in the best estimate analysis consist of quenching water 
and injected gas flow rates, temperatures and pressures, thermal properties of ZrO2 and contact resistance of 
sliding contacts.  

For the uncertainty analysis two main test parameters were evaluated: a) cladding temperatures of the fuel 
rod imitator and b) amount of generated hydrogen (Figure 4).  

 

a) b) 

Figure 4: Results of RELAP/SCDAPSIM calculation of QUENCH-06 experiment: a) behaviour of 
cladding temperatures of the fuel rod imitator from the inner rod ring at 750 mm-height; b) amount of 

generated hydrogen 

The analysis of sensitivity of uncertain parameters on the calculation results was performed using Spearman's 
rank correlation coefficient method. Influence of uncertain parameters to the calculation results presented in 
Figure 5. At the heat up phase and transient phase, the parameters mainly influencing the calculation results 
of fuel rod imitators' temperature are similar: additional resistance (parameter No. 9), steam flow rate and 
temperature (parameter No. 2 and 5), and thermal conductivity of ZrO2 (parameter No. 7). The biggest 
influence on the hydrogen calculation results has the same parameters: additional resistance (parameter No. 
9), steam flow rate and temperature (parameter No. 2 and 5), thermal conductivity of ZrO2 (parameter No. 7). 
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a) b) 

Figure 5: Influence of uncertain parameters to the calculation results: a) cladding temperature of the 
fuel rod imitators in the outer ring at 750 mm-height. Heat up phase and transient phase; b) hydrogen 

calculation results 

PHEBUS FPT1 experiment modelling and evaluation of the uncertainties: The full text of application of 
the best estimate approach for modelling of PHEBUS FPT1 experiments could be found in the article [4]. In 
this article the best estimate analysis of the bundle degradation phase was provided using ASTEC V2.0 code 
ICARE module and SUSA 3.5 computer tool. In the uncertainty and sensitivity analysis 32 uncertain input 
parameters were chosen. These parameters could be divided into two groups - physical parameters and code 
parameters. Few calculation results are presented in Figure 6. 

 

a) b) 

Figure 6: Results of ASTEC calculation of PHEBUS FPT1 experiment: a) fuel cladding temperature at 
700 mm elevation; b) total hydrogen generation 

 

Spearman's rank correlation coefficient method for the sensitivity analysis was chosen. The results of the 
sensitivity analysis showed that different parameters have the greatest influence during different subperiods 
of experiment. However, the performed sensitivity analysis for fuel and cladding temperatures indicated that 
the largest impact on the thermal behaviour modelling have good prediction of the fuel bundle power and 
variation of shroud thermal properties. For the calculation of the hydrogen generation the biggest influence 
has power of the bundle.  

Uncertainty of aerosols deposition in containment in PHEBUS FPT-2: The results of analysis are 
presented in [5]. A detailed nodalisation of PHEBUS containment was developed for computer code 
COCOSYS. This nodalisation consists of 16 nodes and enables simulation of the convective flows of gases. 
Uncertainty and sensitivity analysis was performed using SUSA tool. 100 runs were performed using the 
COCOSYS code. A list of 24 parameters was developed and considered in the performed uncertainty and 
sensitivity analysis. In total 15 parameters are related to modelling of the particle transport in the AFP module 
of COCOSYS code, the rest 9 parameters are related to the thermal-hydraulic analysis.  
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In the performed sensitivity analysis, the calculated determination coefficient R2 for all 24 parameters varied 
between 0.95 and 0.99; thus, the Spearman’s rank correlation coefficient could be used for the sensitivity 
analysis. 

Figure 7 shows the results of the uncertainty analysis for the aerosol mass suspended in the gas phase. The 
measured results are within the calculated uncertainty band. When the peak value is reached, the measured 
results are closer to the average calculated value, but then it decreases faster, and later it complies with the 
minimum calculated values.  

Figure 12 shows 4 parameters giving the largest influence (Spearman’s coefficient larger than ±0.3 at least in 
one point) on the aerosol mass suspended in the containment atmosphere: the dynamic shape factor 
(parameter No. 2), the particle agglomeration factor (parameter No. 4), the Mass Median Diameter (parameter 
No. 6) and the geometric standard deviation (parameter No. 7). 

The parameters that had the greatest influence on aerosol deposition on the containment floor are 
presented in Figure 9. These parameters were the same as those for aerosol mass suspended in the 
containment atmosphere. Compared to the results shown in Figure 8, one could see that the influence of 
parameters on the deposition on the floor is opposite, e. g., the increasing dynamic shape factor (increasing 
deviation from the spherical particle) leads to less deposition on the floor. Increasing the MMD and particle 
agglomeration factor leads to the increased deposition due to gravitational settling. 

The parameters that had the greatest influence on aerosol deposition on the condensers and in the sump 
are presented in Figure 10. The dynamic shape factor (parameter No. 2), the MMD (parameter No. 6), the 
average thickness of water film (parameter No. 13) and the initial pressure (parameter No. 18) were the most 
important parameters for deposition on the condensers and in the sump. 

 

Figure 7: Mass of aerosols in gas phase of 
containment (maximum, minimum, median, 

average and experiment values) 

 

Figure 8: Spearman’s rank correlation 
coefficients for suspended aerosol mass (only 

parameters with values >0.3 at least at one point 
are highlighted) 

 

Figure 9: Spearman’s rank correlation 
coefficients for aerosol deposition on 

containment floor 

 

Figure 10: Spearman’s rank correlation 
coefficients for aerosol deposition on the 

condensers and in a sump 

The distribution of aerosol deposition on different surfaces in the containment is shown in Table 1. The largest 
deposition of aerosols was measured on the containment floor around the sump, where 74% of aerosols were 
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deposited. Besides, it was measured that 14% of aerosol mass was deposited on the condensers and in the 
sump, and 12% was deposited on the vertical containment walls and removed by sampling. The performed 
uncertainty analysis showed that the measured deposition on the elliptic floor and on the condensers is within 
the calculated range of the results; however, deposition on the containment vertical walls is far from the 
calculated results; the maximum value is only 0.9%.  

Table 1: Distribution of aerosol deposition 

 Floor of 
containment 

Condenser surfaces and sump Containment walls + samplings 

Measured 74.0% 14.0% 12.0% 

Min 71.44% 11.28% 0.42% 

Max 86.88% 27.66% 0.9% 

 

Generic containment SB-LOCA simulation and comparison of the parameter uncertainties and user-
effect: The description of the study has been published in [6]. In this study an uncertainty and sensitivity 
analysis with the aim to investigate the effect of different input uncertainties related to the initial conditions, 
material properties and geometric definitions of the Generic Containment nodalisation in comparison to the 
user effect and computer code choice was performed. For the uncertainty and sensitivity analysis more than 
30 uncertain input parameters were chosen and 200 calculation runs were performed using the ASTEC code 
CPA module. The impact of uncertainties on the containment pressure and temperature and hydrogen 
concentration in the characteristic locations was observed. Standard deviation bands of the sensitive 
parameters obtained from the analysis were compared to the corresponding bands obtained from the 
SARNET2 Generic Containment benchmark, which show the user-effect influence (Figure 11). 

 

a) b) 

Figure 11: Comparison of the parameter uncertainty and the user effect standard deviation bands: a) 
pressure; b) hydrogen concentration 

 

The study showed that while there are differences between bands of some parameters, general deviation 
bands caused by parameters’ uncertainty vs. the computer code and the user effect are comparable and in 
the same order of magnitude, i.e. for a quantitative analysis, both must be considered. 

Considering the selected sensitive parameters, there is a small number of significant uncertain input 
parameters and all of them are related to the modelling of containment structures – concrete and steel 
properties, areas of concrete structures’, initial temperatures of the structures (Figure 12). 
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a) b) 

Figure 12: Obtained sensitivity measures (Spearman’s coefficients): a) for pressure; b) for hydrogen 
concentration in the dome 

Sensitivity and uncertainty analysis of atmosphere stratification modelling in MISTRA facility: The 
analysis has been published in [7]. The simulation of the steam injection driven gas mixing experiment M5 was 
performed using a lumped parameter code COCOSYS and a nodalisation scheme with jet/plume injection 
zones and plume path zones. The aim of the simulation was to obtain a stratified atmosphere conditions 
corresponding to the experimental ones. 

 

a) b) 

Figure 13: Obtained tolerance limits of vertical profiles at the end of the experiment: a) steam volume 
fraction; b) temperature 

The analysis results showed that large uncertainties of some experimental facility data – effective heat losses 
and the pressure in the injection loop – have large influence on the sensitive results. Steam and temperature 
distribution in the facility was sensitive to the virtual junctions resistance. Obtained tolerance limits of pressure 
covered the experiment results, while the limits of final steam volume fraction and temperature included most, 
but not all of the measured values (Figure 13). 

1.3 Modelling of accidents using Theory of Probabilistic Dynamics (LEI) 

PWR accident modelling and evaluation of the uncertainties: The full-text description of the approach 
based on the Theory of Probabilistic Dynamics and the application for modelling of a severe accident in French 
900 MWe PWR could be found in [8]. The considered case was supposed to be most relevant for level 2 PSA. 
In this article, SUSA computer tool application was also demonstrated. As a “basic transient” the following 
simplified object/situation was considered: A French 900 MWe PWR with 3 loops and Passive Autocatalytic 
Recombiners (PAR) operating at nominal power before the initiating event; LOCA after a 3” break size on cold 
leg of Reactor Coolant System (RCS); Failure of all water injection system and spray system.  

In [8] the Theory of Probabilistic Dynamics (TPD) and its augmented version based on the concept of stimulus 
and delay are introduced for the dynamic reliability modelling and the simulation of accidents in hybrid 
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(continuous-discrete) systems considering uncertain events. An approach of non-Markovian simulation and 
uncertainty analysis is discussed in order to adapt the Stimulus-Driven TPD for practical applications. 

Twelve uncertain input parameters were used in the analysis e.g. number of moles of steam, temperature 
inside the containment, pressure inside the containment, factor of spray efficiency to condensate hydrogen,  
factor of hydrogen mass flow rate in the range (1: [5875; 7000] or [9401; 14220]), factor of hydrogen mass flow 
rate in the range (2: [7001; 9400]), factor of water injection (SIS) availability, factor of spray injection (CHRS) 
availability, coefficient K1 of recombined hydrogen flow rate, coefficient K2 of recombined hydrogen flow rate, 
factor of peak pressure to cause a rupture, and activation of spray at 2.4 MPa pressure limit.  For the 
uncertainty analysis the uncertain estimate of containment rupture probability (due to multiple hydrogen 
combustion) was considered (Figure 14).  

 

 

 

Figure 14: Example of time-dependent uncertainty analysis of rupture probability estimate 

The analysis of the sensitivity of the calculation results due to uncertain parameters was performed using 
various sensitivity measures. An example of the time-dependent sensitivity of the calculation results due to 
uncertain parameters is presented providing Partial Correlation Coefficients (PCC) in Figure 15. 

 

 

 

Figure 15: Example of time-dependent sensitivity analysis providing PCC 

The set of considered parameters can also be extended and related to the timing, i.e. the set of input 
parameters can reflect uncertain delays and stochastically distributed time moments of events occurrence. For 
such an investigation, the extended analysis could be performed in the future. The additional uncertainty and 
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sensitivity analysis could be also useful in order to show how the uncertain timing is important for the modelling 
and analysis of a dynamic system trying to make it more robust and reliable. 

The developed approach and related methods are used as a basis for a test case simulation in view of various 
methods applications for severe accident scenario simulation and uncertainty analysis. As shown in the test 
case, it is possible to reduce the computing time without meaningful change of the considered frequency mean 
and standard deviation, which is quite high due to uncertain parameters. For this and wider analysis of accident 
sequences, the initial test case specification is then extended and discussed. 

Finally, it is concluded that enhancing the modelling of stimulated dynamics with uncertainty and sensitivity 
analysis allows the detailed simulation of complex system characteristics and representation of their 
uncertainty. The developed approach of accident modelling and analysis considering uncertain events can be 
efficiently used to estimate the reliability of hybrid systems and at the same time to analyze and possibly 
decrease the uncertainty of this estimate. 

1.4 Experience from the application of SUSA (Bel V) 

In general, results of code predictions are subjected to errors due to several sources of uncertainties like model 
limits, approximations in the numerical solution, nodalization and homogenization approaches, or 
imperfect knowledge of boundary and initial conditions. Therefore, it is necessary to investigate the 
uncertainty of the results as well as the sensitivity effects of the key parameters for a given phenomenon. This 
will allow identifying models that need improvement and areas where more validation data are needed.  

In the following, SUSA uncertainty method was applied for the assessment of the coupled RELAP5/3.3-
PARCS/2.6 code in predicting the experimental results issued from the Kozloduy VVER100 pump trip test [9]. 
Indeed, the code results show deviations with respect to the plant measurements (Figure 16). The origin of 
these discrepancies could not be identified at a first glance.  

Therefore, the SUSA statistical code package was used to carry out sensitivity study that allows getting a 
qualitative and quantitative assessment of the code prediction capabilities. For this purpose, nine uncertain 
parameters with their distribution function are chosen according to a ranking process established by the 
author’s expertise judgment or by using outcome from similar studies of the most influent parameters that 
govern the transient course.  

Then a set of a random sample of input decks is generated by a random combination of the uncertain 
parameter over their probability distribution function. The number of samples is determined by the Wilk’s 
formula according to the desired probability content and confidence level. This number is independent of the 
number of chosen uncertain parameters. In the current study dealing with uncertainty analysis of the code 
prediction, a random sample of 50 input decks is generated to get a 95% probability content and a confidence 
level of 90% of a two-sided statistical tolerance limits. Actually if the objective was to assess a parameter with 
respect to a safety criterion, the one-sided statistical tolerance limit would then have been chosen.   

Figure 4 provides the SUSA calculation result related to the tolerance limits of the axial power distribution. The 
calculated upper and lower limits envelop completely the measured trend only at the upper part of the core 
zone. In the mid and lower part of the core, the measured trend is slightly out of the tolerance limit interval. 
Reasons for such effect could be explained due to non-consideration of further uncertain input parameter 
as mentioned above. However, more investigation should be performed to identify the source of the 
discrepancies, Table 2. The most significant parameter that governs the axial power distribution is the control 
rod worth (UP6), followed by UP5, UP1, UP4, and UP8. It is interesting to notice (see Figure 18) that the sign 
of these coefficient changes according to the position of the control rods in the core. For UP6, the effect on the 
power is negative in the upper part of the core where the control rods are inserted. Due to the axial coupling, 
this effect becomes positive in the lower part. The same trend effect is observed for UP1, which affect the axial 
distribution profile of the Doppler temperature. The effect is positive in the lower part of the core since higher 
value of ω leads to low Doppler temperature, and therefore lower Doppler feedback. The gap effect (UP5) it is 
negative in the lower part of the core since higher Xe fraction reduces the conductivity, and therefore the 
Doppler feedback becomes stronger. 
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Figure 16: Mean axial power distribution during steady state1. 

 

Figure 17: Uncertainty results for axial power profile during steady state. 

                                                      
1 Steady state is selected here due to the availability of plant measurement. 
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Figure 18: Spearman’s Rank coefficients for the steady state axial power distribution. 

 

Table 2: Rank of uncertain parameter according to their effect on the axial power distribution 

 

2 SUNSET (IRSN, INRNE, LEI, TUS) 

2.1  Epistemic variables using probabilistic framework (IRSN) 

The full text of an example of UQ study based on SUNSET-ASTEC tool can be found at the following reference 
[10]. It is summarized hereafter. 

The study was based on version 2.0 of ASTEC. The aim of the study was to check the impact of several iodine 
related epistemic uncertainties on the source term at different times of a Loss of Feed Water of Steam 
Generator severe accident occurring on a French PWR1300, the containment spray system being unavailable. 
The six chosen epistemic variables were the following:   

 Gaseous iodine mass fraction at primary circuit break 
 Iodine oxides deposition rate in containment 
 Ozone formation rates (forward and backward reactions) 
 Organic iodine formation rate in containment atmosphere and sumps 
 Release rate from paints of organic compounds that may react with molecular iodine in containment 

atmosphere and sumps to form organic iodides 

 

The chosen framework was probabilistic, and the values chosen for the distribution were based on iodine 
experts’ advice. The sample size was 100, which resulted in a good confidence level on the 5% and 95% 
percentile of the source term. Figure 19 illustrates the computed iodine source term. The order of magnitude 
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of the dispersion range is about a factor 20 between percentile 5 and percentile 95 by the end of the accident. 
It shall be noted that the farther from the initiator, the bigger the uncertainty range is. 

Another comment from the study (not mentioned in the article, but mentioned internally at IRSN, see Figure 
20) was that this order of uncertainty was comparable to the kind of difference between the source term from 
two different sequences (i.e. variability), which led to the conclusion that epistemic and stochastic uncertainties 
had to be considered altogether in the future. 

 

Figure 19: Experience from application of the UQ-methods, IRSN, epistemic variables using 
probabilistic framework: iodine related source term 

 

 

Figure 20 : Depending on the scenario the iodine release ranges from ~0.1g to ~5g 

A sensitivity analysis performed at different instants of the accident showed that the influence of the parameters 
was variable through time, in order of magnitude and orientation as illustrated in Table 3. 

 

 

Table 3: Variation of correlation coefficients through time  
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 1 day 6 days 

Iodine gaseous mass fraction at primary circuit break 0.72 0.35 

Iodine oxides deposition rate in containment -0.75 -0.21 

Organic iodine formation rate in containment atmosphere  0.26 0.14 

Organic compound release rate in containment atmosphere -0.05 0.13 

Organic compound release rate from sumps 0.05 -0.09 

Ozone formation rate (forward reaction) 0.52 -0.40 

Ozone formation rate (backward reaction) -0.30 0.14 

 

2.2 Best estimate approach for modelling of QUENCH-03 experiment (LEI) 

The full text of application of the best estimate approach for modelling of QUENCH-03 and QUENCH-06 
experiments could be found in [3]. QUENCH-03 experiment analysis was performed using ASTEC V2.0 code 
ICARE module and SUNSET tool. The uncertainty analysis was performed using a two-side tolerance limit 
with 0.95 of probability and 0.95 confidence level. According to Wilks' formula, the number of calculations 
necessary for two-side tolerance intervals is 93.  Using SUNSET computer tool, 100 different collections of 12 
uncertain input parameters (quenching water and injected gas flow rates, temperatures and pressures; thermal 
properties of ZrO2 and additional resistance outside the bundle) were generated.  The deviation ranges of 
parameters were assumed based on experience and possible measurements errors. 

Two parameters where evaluated: a) cladding temperatures of the fuel rod imitator and b) amount of generated 
hydrogen (Figure 21, Figure 4).  

 

a) b) 

Figure 21: Results of ASTEC calculation of QUENCH-03 experiment: a) cladding temperatures of the 
fuel rod imitator from the outer ring at 750 mm height; b) amount of generated hydrogen 

 

The analysis of sensitivity of uncertain parameters was performed employing Spearman's rank correlation 
coefficient method for two phases of experiment: for the bundle heat-up phase; and at the quenching phase 
(at time moment, when the maximal temperatures are reached). Influence of uncertain parameters to the 
calculation results presented in Figure 22. At the heat up phase, the parameters mainly influencing the 
calculation results of fuel rod imitators' temperature are: additional resistance (parameter number 9), thermal 
conductivity and specific heat of ZrO2 (parameters No. 7 and 8), while at the quenching phase - additional 
resistance (parameter No. 9), steam flow rate (parameter No. 2) and thermal conductivity of ZrO2 (parameter 
No. 7). The biggest influence on the hydrogen calculation results has: additional resistance (parameter No. 9), 
steam flow rate (parameter No. 2), thermal conductivity and specific heat of ZrO2 (parameters No. 7 and 8). 
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a) b) 

Figure 22: Influence of uncertain parameters to the calculation results: a) cladding temperature of the 
fuel rod imitators in the outer ring at 750 mm height; b) hydrogen calculation results 

 

3 DAKOTA (ENEA, CIEMAT, TRACTEBEL) 

3.1 MELCOR/DAKOTA/SNAP Applications (ENEA) 

ENEA MELCOR/DAKOTA studies here reported, represents only first ENEA exercises aiming to show the 
complete application of the coupling procedure of MELCOR [11], [12] and DAKOTA in a SNAP 
environment/architecture. They do not want to represent a complete and representative analysis of the 
MELCOR code uncertainty; the main target of these applications is to show the feasibility and the great 
advantage to have everything integrated in a graphical user interface (SNAP) that permits to: 

 Develop input-decks from scratch; 
 Import existing input-deck developed in ASCII format; 
 Develop the post processing of the simulations by using: 

o SNAP animation modelling capability; 
o APTPLOT plot capability. 

 Perform uncertainty analyses: 
o Running automatically the different random sampling tasks; 
o Develop all the dispersion plots; 
o Develop the statistical analyses; 
o Characterize, through response correlations, the relationship between the selected uncertain 

input parameters and the FOMs 
 Etc. 

The ENEA applications of MELCOR/DAKOTA in a SNAP environment/architecture, here discussed, have been 
presented at the last European MELCOR User Group (EMUG) 2019 [13].  

3.1.1 CASE 1: MELCOR/DAKOTA coupling against CSTF-AB1 test 

This activity has been done by using the same MELCOR input-deck developed along the EU-JASMIN project 
(Joint Advanced Severe Accidents Modelling and Integration for Sodium-Cooled Fast Neutron Reactors) 
coordinated by IRSN and funded in the 7th Framework Programme of the European Commission [14]. In that 
project ENEA has been involved in the WP2.3 (ST) - Source term - coordinated by CIEMAT. A benchmark 
activity, coordinated by CIEMAT, has been performed with different codes as MELCOR, ASTEC-CPA, 
CONTAIN, FEUMIX, ASTEC-CPA (specific models for in-containment Na phenomena have been 
implemented). The tests selected for the benchmark were the CSTF-AB1, AB2, and FAUNA F2, F3 and 
EMIS10b (Pool Fire Tests) [14] [15]. ENEA used the MELCOR and ASTEC-CPA code for the simulation of the 
selected tests in order to support the benchmark of the CPA module of ASTEC-NA.  

After JASMIN was finalized, ENEA did the first application (CASE1) of the MELCOR/DAKOTA coupling in a 
SNAP environment/architecture. The dispersion of the aerosol suspended mass (SUSP), aerosol mass median 
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diameter (MMD), geometric standard deviation of the aerosol distribution (SSD), and tot mass deposited 
(TOT_DEP) was analysed and compared against the CSTF-AB1 experimental data  [16] having selected as a 
input uncertain parameters the aerosol constants. In relation to the input uncertainty parameters a first attempt, 
only to test the procedure, has been done to characterize them in term of PDF. The range value of the input 
uncertain parameter is reported in Table 4, and it is based on [17]. 

Figure 23 shows the DAKOTA Properties Tab for the ENEA Case 1 (FOMs selected, selection of Latin 
hypercube, and probability and confidence level of 98%). Based on the Wilks formula [18], 452 are the required 
tasks (as a results of the calculate samples bottom), to calculate the 0 order statistic for the specified FOMs 
with a 98.0% probability and a 98.0% confidence level. The data extracted to perform the uncertainty analyses 
is the value of the FOMs at the end of the pool fires. An initial DAKOTA run was performed using the specified 
input uncertain parameters, to generate a set of variates for each task. The individual tasks were then 
performed, and the FOMs were extracted from the completed calculations. A total of 452 tasks are required, 
452 tasks were completed successfully. In Figure 24, the input uncertainty parameters, CHI, GAMMA, FSLIP, 
STICK has been plotted against the iteration index. In Figure 25, the FOM-SUSP and FOM-MMD have been 
reported against the CHI and GAMMA input uncertain parameters. Figure 26 shows the dispersion band, done 
with APTPLOT, for the suspended mass together with the cumulative distribution function and the probabilistic 
density function calculated by DAKOTA. Table 5 shows the statistical results reported in the automatically 
generated DAKOTA report for the SUSP FOM. 

 

Table 4: Uncertainty input parameters range (ENEA CASE1) [12] [17] [11]  

 

 

 

Figure 23: DAKOTA SNAP property Tab for the ENEA CASE 1. 

 

 

AEROSOL CONSTANT Range Used MELCOR NAME
Default Value 

MELCOR

Dynamic Shape factor 1.0‐5.0 CHI 1

Agglomeration Shape factor 1.0–5.0 GAMMA 1

Slip Coefficient 1.14‐1.257 FSLIP 1.257

Sticking Coefficient 0.5‐1.0 STICK 1

Turbulence Dissipation (m2/s3) 0.001‐0.02 TURBDS 1.00E‐03

Thermal Accomodation Coeffcient  2.18‐2.25 FTHERM 2.25

Gas Thermal Conductivity/Particle 

Thermal Conductivity
0.06 TKGOP 0.05

Diffusion Boundary layer Thickness 

(m) 
1.0e‐5‐1.0e‐3 DELDIF 1.00E‐05
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Figure 24: Variate and Response data: input uncertain parameter vs iteration index for the ENEA 
case1. 

 

 

Figure 25: Variate and Response data: FOM VS input uncertain parameters: SUSP and MMD VS D1 
(CHI) and d2 (GAMMA) for the ENEA Case 1. 
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Figure 26: SUSP dispersion of the results against the experimental data, cumulative distribution 
function, and probability density function (ENEA CASE 1). 

 

 

 

 

 

Table 5: Statistical results, reported in the automatically generated DAKOTA report, for SUSP-FOM 
(ENEA CASE 1). 

Summary Value Task # 

Min Value 11,5619 135 

Max Value 34,94785 231 

Mean 23,1486 - 

Median 22,61615 average of 185 and 102 

Standard Deviation 5,24126 - 

Coefficient of Variance 0,20899 - 

 

Table 6: Response correlation, reported in the automatically generated DAKOTA report, for SUSP 
FOM (ENEA CASE 1). 

 Simple Partial Simple Rank Partial Rank 

d1 0.470256 0.87473 0.467447 0.91701 

d2 -0.802127 -0.949568 -0.834265 -0.971159 

d3 0.0224959 0.058378 0.0222934 0.0260806 

d4 -0.168458 -0.604287 -0.180916 -0.639637 

d5 -0.0273861 0.00756861 -0.0303348 -0.211284 

d6 0.0183224 0.00143064 0.0099558 -0.0508664 

d7 -0.00344123 0.0352195 0.00241676 -0.0439138 

d8 0.0159181 -0.0395132 0.0320765 0.0407834 

MMD 0.750518 - 0.820846 - 

SSD -0.683356 - -0.604208 - 



D.3.1  Appendix-2 

www.musa-h2020.eu     24 

 Simple Partial Simple Rank Partial Rank 

TOT_DEP -1.0 - -1.0 - 

Note: NaN values typically indicate an insufficient number of tasks were supplied to perform the analysis. 

 

3.1.2 CASE 2: MELCOR/DAKOTA coupling for a PWR 

In the CSARP framework, a MELCOR/DAKOTA sample input-deck has been developed by ENEA using the 
_PWR_v2-0.inp input available for MELCOR users. Since the file was available in ASCII format, the steps that 
have been done with SNAP are: 

 Get the text file : _PWR_v2-0.inp; 

 Imported through SNAP and create a .med file; 

 Create the STREAM MELCOR and DAKOTA; 

 Choose some input uncertain parameters and the related distribution type and related 
parameters; 

 Run the analyses with SNAP. 

As a FOM for this first analysis, only the total cumulative hydrogen production in the core from all the oxidation 
process (COR-DMH2-TOT) at the end the transient has been selected. 

The uncertainty parameters that have been selected to apply the procedure, as examples, are: 

 Vfall : Velocity of falling debris; 

 Hdblh: Heat transfer coefficient from debris to lower head; 

 SC1132(1): Core Component Failure Parameters - Temperature to which oxidized fuel rods 
can stand in the absence of unoxidized Zr in the cladding; 

 SC1131(2): Zircaloy melt breakout temperature; 

 SC1141(2): Core Melt Breakthrough Candling Parameters - Maximum melt flow rate per unit 
width after breakthrough; 

 SC1502(2): Minimum Component Masses - Minimum total mass of component subject to the 
maximum temperature change criterion for timestep control; 

 SC1250(1): Conduction Enhancement for Molten Components - Temperature above which 
enhancement is employed. 

In relation to the input uncertainty parameters a first attempt, only to test the procedure, has been done to 
characterize them in term of PDF. The type of PDF and the range value of the input uncertain parameters are 
based on [19] [20] . Table 7, shows the model variables and distribution as summarized in the DAKOTA 
automatically report. 

 

Table 7: Uncertainty Quantification Input Options - Model Variables and Distributions (ENEA CASE2). 

Distribution 
Name 

Distribution 
Type 

Application 
Rule 

Distribution Parameters Model Variables Nominal 

d1 Triangular Scalar a:2098.0,  m:2400.0,  b:2550.0 COR 1131-2 Replacement 

d2 Triangular Scalar a:0.01,  m:0.083,  b:1.0 COR 1141-2 Replacement 

d3 Triangular Scalar a:0.05,  m:0.1,  b:1.2 VFALL Replacement 

d4 Triangular Scalar a:50.0,  m:1000.0,  b:1100.0 HDBLH Replacement 

d5 Normal Scalar μ:2700.0,  σ:120.0,  [-∞, ∞] COR 1132-1 Replacement 

d6 Normal Scalar μ:5.0,  σ:1.0,  [-∞, ∞] COR 1502-2 Replacement 

d7 Normal Scalar μ:2800.0,  σ:150.0,  [-∞, ∞] COR 1250-1 Replacement 
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Figure 27 shows THE SNAP JOB-STATUS during the DAKOTA uncertainty application (in particular are 
visualized the different extraction steps). Figure 28 shows the tot hydrogen mass generated dispersion, 
cumulative distribution function, and probability density function (ENEA CASE 2). Table 8 shows the statistical 
results based on the 59 samples; Table 9 shows the response correlation reported in the automatically 
generated DAKOTA report based on the 59 samples (ENEA CASE 2). The input file used in a -pre_run 
DAKOTA invocation to generate the random variates, is reported in Figure 29. 

 

Figure 27: SNAP JOB-STATUS during the DAKOTA uncertainty application (ENEA CASE2). 

 

Figure 28: Total hydrogen mass generated dispersion, cumulative distribution function, and 
probability density function (ENEA CASE 2). 
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Table 8: Statistical results based on the 59 samples (ENEA CASE 2). 

Summary Value Task # 

Min Value 250.87505 54 

Max Value 574.76666 51 

Mean 381.43805 - 

Median 382.44507 40 

Standard Deviation 56.8461 - 

Coefficient of Variance 0.38578 - 

 

Table 9: Response correlation reported in the automatically generated DAKOTA report based on the 
59 samples (ENEA CASE 2). 

 Simple Partial Simple Rank Partial Rank 

d5 0.0979063 0.102384 0.135067 0.268539 

d6 0.110172 0.146704 0.0338983 0.0599765 

d7 0.098521 0.123725 0.126768 0.209831 

d1 0.737284 0.791904 0.765926 0.855157 

d2 -0.495872 -0.627241 -0.379486 -0.653184 

d3 0.03035 0.00594472 0.0189947 0.0516358 

d4 -0.0188159 0.0125986 -0.0151373 0.0108442 
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Figure 29: DAKOTA input reported in the automatically generated report. 

3.2 Uncertainty quantification of in-pool fission product retention during BWR 
station Black-out sequences (CIEMAT) 

This study investigates uncertainties on predictions of suppression pools decontamination. A stand-alone 
version of SPARC-90 (Suppression Pool Aerosol Removal Code) was used in combination with DAKOTA-6.4, 
to propagate the uncertainties in the input deck variables affecting the Decontamination Factor (DF). The input 
data for SPARC-90 was based on MELCOR 2.1 calculations of Fukushima Unit 1. The results indicate that DF 
uncertainties may spread around two orders of magnitude and the uncertainty margin stays roughly constant 
over time. In addition, a sensitivity analysis based on the Pearson and Spearman correlation coefficients was 
carried out and pointed that uncertainties associated to particle inertia (i.e., particle density and size) and in-
pool phase change (i.e., non-condensable gas fraction in the carrier gas) dominate the uncertainties found in 
the DF for this specific scenario. 

3.3 Uncertainty quantification for different codes (Tractebel) 

An example of application at Tractebel is the following, published with the following reference [21]. The goal 
of this work was to test improvement of codes and methods for simulation of integral LOCA test experiments. 
It was focused on the simulation of Halden LOCA tests IFA-650.9 and IFA-650.10. The uncertainty 
quantification was used to determine if the uncertain bands on the simulation results could cover the 
experimental results. Without the uncertainty quantification, the simulation of the experiments involved 3 steps. 
First, the irradiation of the mother rod with the steady state FRAPCON code, then the re-fabrication into an 
experimental rodlet by adaptation of the restart file from the code, finally the simulation of the experiment with 
the transient code FRAPTRAN. For the uncertainty quantification, uncertainty parameters in fuel rod 
manufacturing data, operation and test boundary conditions, physical properties and key models were 
identified, with their ranges and distributions defined. The total number of contributors was 37. The DAKOTA 
tool has been used to sample these parameters 200 times and generate corresponding input models for the 
multi-step simulation. The relevant output parameters (cladding temperature, plenum gas pressure, cladding 
radius and elongation) were collected, then the lower and upper bounds were determined by using the order 
statistics. This permitted to confirm that some of the recent code and method improvements were adequate 
and that others shall be further reworked, Figure 30. 
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Figure 30: Uncertainty quantification of FRAPCON/FRAPTRAN using DAKOTA for the IFA-LOCA 
test 

Note that the results are varying with time and along the fuel rod axial position. Finally, the important input 
uncertainty parameters were identified through the partial rank correlation coefficients obtained by the global 
sensitivity analysis. Other relatively similar applications were made in the previous years. In particular, there 
was uncertainty analyses in neutronics, fuel rod thermal-hydraulics and core thermal-hydraulics for the UAM 
benchmark organized by OECD [22]. Also, uncertainty analyses were included in the OECD/NEA REA 
benchmark [23]. Concerning severe accidents, the DAKOTA tool was interfaced with the EVNTRE code. This 
coupling has been made in order to develop the capability to perform uncertainty analysis as well as multiple 
sensitivity analysis on the most important basic events of the Probabilistic Safety Analysis (PSA) level 2. There 
is also an implementation of the DAKOTA tool with the MELCOR code. This coupling has been made in order 
to develop the capability to perform the quantification of some basic events of the Probabilistic assessment 
(PSA) level 2 through MELCOR calculations as well as multiple sensitivity analysis on important Severe 
Accident phenomena such as aerosols behavior, Molten-Core Concrete Interaction (MCCI), Direct 
Containment Heating (DCH), etc. There were however difficulties at the time linked to managing the necessary 
interactions between uncertain contributors and preventing combinations of sampled values that would cause 
code instability. Another interesting application was performed for the PREMIUM benchmark [14]. In that 
application of DAKOTA to system thermal-hydraulics code RELAP5/MOD3.3, the aim was to quantify  the 
uncertainty ranges that had to be applied to the model input parameters. This was done by performing repeated 
uncertainty quantification studies on several relevant experiments. As shown in the following figures, he ranges 
of uncertain contributors of interest was modified in order to cover all the experimental values with the uncertain 
bounds on the simulation results by manual iterations.   
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Figure 31: Approach followed for the Uncertainty quantification in the frame of PREMIUM 
benchmark 

The IUQ method can be also used to quantify the uncertainty of the major model input uncertainties of the 
Severe accidents codes. 

 

4 URANIE (KIT, BELV) 

4.1 The ASTEC/URANIE platform (KIT) 

An interface based on C++ and Python scripts has been developed at KIT to integrate the ASTEC results in 
the URANIE framework [15][16]. The flowchart of the ASTEC/URANIE platform is shown in Figure 32. The 
interface performs three actions:  

1. Pre-processing: the information related to the PDFs of the uncertainties of the input parameters are 
loaded in an URANIE DataServer object; after having defined the N numbers of ASTEC runs to be 
performed, the random Monte Carlo sampling is employed to assess the corresponding N ASTEC 
input decks; the N ASTEC input decks are run. 
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2. Export of the ASTEC results to the URANIE sampling: the ASTEC results for the output variables of 
interest are collected in *.plt files; such data are reorganized in a unique file suitable to be employed 
by URANIE. 

3. Post-processing: the statistics is performed by URANIE; the results are sampled and provided as .txt 
or .csv files. 

 

 

Figure 32: Flowchart of the ASTEC/URANIE Platform developed at KIT [24] 

 

4.1.1 Application of the ASTEC/URANIE platform to QUENCH-08 Experiment  

The ASTEC/URANIE platform has been employed to perform the U&S analysis of the ASTEC results for the 
QUENCH-08 experiment, performed at KIT [25].  

The QUENCH-08 test aimed analyzing the effect of the injection of a low mass flow rate (steam) on H2 
production, namely representing the effect of the dispersed flow region located above the Transition Boiling 
Region on a pre-oxidized PWR sub-assembly. As shown in Figure 33, the bundle is loaded with 21 Zr-4 Fuel 
Rod Simulators (FRS) (20 heated+1 unheated) with identical radial dimensions as PWR fuel-element cladding 
(pin pitch=1.43 cm).  

During the scenario, after a pre-heating phase and stabilization, the transient begins by increasing the power 
of the bundle Figure 34. The quenching phase is initiated by injecting saturated steam (15 g/s, 0.5 g/s/rod) 
when the temperature of the shroud at 950 mm elevation reaches 2073 K (@3776 s). The power continues to 
increase for ~40 s and then reduced from ~17.8 kW to ~4kW within 16 s and to zero. 
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Figure 33: Sketch of the QUENCH facility [25] 

 
 

 

Figure 34: QUENCH-08 experiment  



D.3.1  Appendix-2 

www.musa-h2020.eu     32 

The FOMs of the QUENCH08 experiment are the total amount of H2 produced, the oxide scales of selected 
rods, and the temperature behavior at different elevations in the bundle and in the shroud. 

The U&S analysis of the ASTEC results has been carried out by employing the latest versions of the ASTEC 
code (v2) and of the URANIE tool (v4.1) with two main goals: 

 Evaluating the performance of the calculation procedure when applied to ‘real’ ASTEC evaluations; 
 Identifying the pros and contra of the application of URANIE to ASTEC in terms of volume of data to 

be managed and related CPU wall-clock time. 

Having this in mind, a stress test has been performed to check the robustness of both the ASTEC/URANIE 
platforms and the URANIE tool when applied to severe accident codes. Therefore a quite large number of 
input and output parameters has been considered in the analysis, which has been performed for each time 
step of the ASTEC calculation.  

The uncertainty of 24 input parameters has been propagated in the ASTEC/URANIE evaluation with respect 
to: the geometry model, the scenario, the clad integrity criteria, the radiative and convective heat exchange 
model, and the relocation and oxidation of the molten material. The list of input parameters and the information 
on the PDFs of the associated uncertainties are shown in Table 10. In order to assess the PDFs of the input 
parameters, the data in[17] have been considered. 

Table 10: Input parameters of the ASTEC/URANIE analysis of the QUENCH-08 test [24] 

Parameters PDF Mean Std. Dev. Min./Max. 

Int. diameter Shroud Uniform   0.99/1.01 

Thickness Shroud Uniform   0.99/1.30 

Thickness Insulator Uniform   0.99/1.01 

Ar Mass Flow Rate Normal 1.0 0.05 0.95/1.05 

Steam Mass Flow Rate Normal 1.0 0.05 0.95/1.05 

Outlet Pressure Normal 1.0 0.02 0.98/1.02 

Fuel/Clad Internal Pressure Uniform   0.99/1.01 

Rod Anisotropic Factor Uniform   0.00/1.00 

Shroud Anisotropic Factor Uniform   0.00/1.00 

Threshold Thickness Uniform   200/400 

Failure T ZrO2 Uniform   2248/2500 

HD (Average additional heat transfer coefficient 
due to droplet projection) 

Normal 100.0 0.05 95/105 

ZD (Height above the quench front concerned by 
droplet projection) 

Normal 0.8 0.05 0.76/0.84 

Alpha (Threshold void fraction to allow exchange 
with liquid droplets) 

Uniform   0.99/0.999 

CRES (Residual saturation) Uniform   0.80/1.20 

KEXP (Exponent for the saturation in the relative 
permeability) 

Uniform   2.0/4.0 

KSMX (Maximum value of Permeability/Viscosity ) Uniform   0.90/1.10 

GRDR (Corrective factor for the gradient in the 
crust interfacing with the liquid) 

Uniform   0.90/1.10 

GREX (Corrective factor for the gradient in the 
crust interfacing with the steam) 

Uniform   0.90/1.10 
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The FoMs of the analysis are the H2 production, the rods and shroud oxide scales, and the rods and shroud 
temperatures at different elevations for a total of 37 vectorial output parameters with a size of 2380 time steps. 
Therefore, the total number of variables is about 90000 (24+37*2380). Note that despite the employment of 
such large number of input and output parameters is most likely out of the scope of plant analyses, such big 
dimensions of the problem allow evaluating the performance of the ASTEC/URANIE platform. 
 

4.1.2 The ASTEC/URANIE results for the QUENCH-08 Experiment 

50 ASTEC runs have been performed. The results concerning mean, Std. Dev, minimum, and maximum of 
the H2 mass produced and the H2 production rate are shown in Figure 35. Attention is focused on the H2 
integral production. The results show that the mean value is about 60g, about 20 g below the best-estimate 
evaluation, with a Std. Dev of about 25 g. 

 

 

Figure 35: ASTEC/URANIE results: H2 mass and production rate [24] 

 

The Pearson’s sensitivity coefficients related to the input parameters for the geometry model and the scenario 
are shown in Figure 36. The results show a significant impact of the uncertainty on the internal diameter of the 
shroud on the H2 production in the quench phase. The internal diameter and the thickness of the shroud, as 
well as the Ar and steam mass flow rate influence the pre-quenching phase. 

HSLX (Max value for the mass transfer coefficient 
HSL between solid and liquid) 

Uniform   0.90/1.10 

MULT (Factor applied on exchange area) Uniform   0.90/1.10 

RDZR (Relative diffusivity of ZR in the melt) Uniform   0.90/1.10 

KEXP (Exponent for the saturation in the relative 
permeability) 

Uniform   2.0/4.0 
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Figure 36: Sensitivity of the H2 production on the input parameters for the geometry and the scenario 
[24] 

 

The Pearson’s sensitivity coefficients related to the input parameters for the radiative and convection heat 
exchange are shown in Figure 37. As expected, the uncertainty on the convection model have no meaningful 
influence on this scenario. On the contrary, the anisotropic factor of the rods and of the shroud have a not 
negligible impact of the H2 production in the pre-heating and during the stabilization phases, respectively. 

 

 

Figure 37: Sensitivity of the H2 production on the input parameters for radiative and convection heat 
exchange [24] 

 

The Pearson’s sensitivity coefficients related to the input parameters for the relocation and oxidation of the 
molten material are shown in Figure 38. The results show that the most significant impact on the H2 production 
after quenching comes from the uncertainty on the diffusivity of Zr in the melt (about 60%) and on the heat 
exchange area of the melt (about 40%). This is in line with the ASTEC results, which predict the melt formation 
between 950 mm and 1100 mm elevation as also observed in the experiment. 
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Figure 38: Sensitivity of the H2 production on the input parameters for relocation and oxidation of 
the molten material [24] 

 

4.1.3 Performance of the ASTEC/URANIE application to the QUENCH-08 Experiment 

The ASTEC/URANIE are rather consistent, namely the trends of the results were expected. From this point of 
view, the URANIE tool shows to be able to be applied to severe accident codes. Further, the ASTEC/URANIE 
platform demonstrates to be a powerful tool for U&S analyses of severe accident scenarios. 

The stress test allowed further improving the performance of the URANIE. The original version of the 
ASTEC/URANIE interface employed a read/write mode by columns, namely for each line the data on each 
columns were read/written. The CPU wall-clock time employed is huge (about 32.6 hours) despite the parallel 
option activated, as shown in Table 11. URANIE developers suggested employing the ‘vector mode’, namely 
each column is read/written as a vector of elements. By extending the URANIE input deck with the ‘read/write 
by vectors mode’, the URANIE tool takes about 6 minutes (Table 11), which is rather reasonable.  

Table 11: CPU wall-clock time of URANIE: original vs. update 

 

An important aspect refers to the CPU wall-clock time for the ASTEC simulations. The ASTEC part of the 
analysis of the QUENCH-08 experiment took about 850 minutes (50 runs, 2 CPUs on a VirtualBox). In view of 
performing similar analysis at plant level, running on clusters look mandatory, or at least recommended. Efforts 
at KIT are going on in this direction. 
 
 

Action Original Update 
Read/write mode by columns by vectors 
Reading input file 10 minutes 21 s 
Computing statistics 4.2 hours 58 s 
Writing Output Files 28.4 hours 4 minutes 
Total ~ 32.6 hours ~ 6 minutes 



D.3.1  Appendix-2 

www.musa-h2020.eu     36 

4.2 Bel V Experience from the application of URANIE 

URANIE [26] has been used by Bel V for the OCDE/NEA PREMIUM benchmark [27] [28], coupled with the 
thermal-hydraulic system code CATHARE2, and the probability density functions of the uncertain input 
parameters determined by the CIRCE methodology [29]. The study addressed the uncertainties in the physical 
models involved in predicting the reflooding of fuel rods in the core, such as heat transfer downstream of the 
quench front, enhance of thermal transfer near the quench front, the phases relative velocity to the downstream 
of the quench front. 
 
Hereafter, the different phases of the study performed by Bel V are listed. 
 

I. Identification of the physical models of the CATHARE2 code associated with physical phenomena 
considered to be predominant [30] [31] [32]. 
 

II. Determination of the most Influential Uncertain Input parameters (IUIP) associated with these physical 
models by performing sensitivity analyses on the basis of a CATHARE2 reference calculation of one 
test of FEBA reflooding experimental program. 

 
III. Quantification of the uncertainties of the IUIP based on the results of several FEBA tests, by using 

CATHARE2 and the CIRCÉ methodology. 
 

IV. Propagation of uncertainty for the FEBA and PERICLES reflooding experiments by using CATHARE2 
coupled with URANIE, to verify the quality of the method prediction, and confirm the uncertainties 
found in the previous phase.  

 
The most influential uncertain input parameters, selected thanks to CATHARE2 analysis, were: the interfacial 
friction, the global wall to fluid heat transfer, and the very local quench front progression reflood parameter.  
 
A total of 74 responses derived from the CIRCE approach and associated to 6 FEBA tests have been used as 
input for the propagation of the uncertainties in URANIE: cladding temperatures downstream the quench front 
for various times and elevations (46) and quenching time at various elevations (28). 
 
For the multipliers of the coefficients used in physical models of CATHARE2, a log-normal law formulation of 
the probability density function has been chosen in CIRCE, a normal formulation has been discarded 
because leading to negative multipliers. 
 
For both series of experiments (6 tests for each series), the characteristics of the uncertainty propagation in 
URANIE were the following: 

- Simple Random Sampling 
- No truncation performed 
- Sample size set to 200; that is 2400 calculations 

 
Uncertainty analysis of the 1D Reflooding FEBA tests shows that the results of the reference calculations and 
the experimental data are generally inside uncertainty bands. 

Uncertainty analysis of the 2D Reflooding PERICLES (blind) tests shows that the results of the reference 
calculations and experimental data are generally outside uncertainty bands, moreover, reference calculations 
is very different from the experimental data (see for example the cladding temperature in Figure 39). 
 
One of the main reason of unsatisfactory results is connected with the use of CIRCE (hypothesis of linearity 
not always fulfilled). Note that CIRCE has also a limitation: the application to the quantification of input 
uncertain parameters larger than 1-3 not recommended.  
 
Nevertheless, URANIE has proven to be an adequate tool to manage the propagation of uncertainties 
on two series of experiments of six tests each, on which 200 runs per test were performed. Its 
application to severe accident codes is possible since URANIE is able to handle a code in a non-intrusive 
manner, considering it as a black box.  
 
Another issue is the selection of experiments and their adequacy for the purpose of the study, e.g. for 
the current case, the lack of representativeness of the FEBA experiment (used for input uncertainty 
quantification) for PERICLES (used for input uncertainty validation, blindly).  
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Figure 39: Uncertainty Propagation for PERICLES tests – Cladding Temperatures 

 

5 RAVEN (UNIRM1, JAEA) 

5.1 Source term uncertainty quantification and global sensitivity analysis 

As the previous UQSA experience, JAEA developed a specific methodology, consisting of a sampling-based 
UQ and surrogate-based GSA. The UQ part consists of  

1. parameter screening (one-at-a-time method and Morris method), 
2. LHS sampling considering parameter correlations, 
3. MELCOR1.8.5 running,  
4. probability density functions of representative source terms of Cs and I.  

 
The GSA part consists of  

1. training of a statistical surrogate model using Bayesian nonparametric method,  
2. global sensitivity analysis using Sobol’ sensitivity index. For the MUSA project, MELCOR 2.2 is 

currently usable at JAEA, and will be used to coupling with RAVEN [33] [34]. 

5.2 Other applications 

JAEA has used RAVEN for simulation-based probabilistic risk assessment (also known as dynamic PRA), by 
coupling with a simplified thermal-hydraulic code. 
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1 SUSA (GRS, SSTC,CNSC) 

To start a large number of simulation runs within a standard high-performance computing (HPC) cluster 
environment, the software Cluster Computing Processor (CCP) may be used (Berner 2017). The simulation 
runs must be based on corresponding input files each considering a different set of values sampled for the 
uncertain input parameters. These input files may be automatically generated by SUSA. Since the simulation 
runs do not depend from each other, the collectively launched computation processes can be easily executed 
in parallel by distributing the individual runs over the nodes of a cluster computing environment. The advantage 
of performing the simulation runs in parallel (and not sequential) is the considerable decrease of the total 
computation time. CCP offers basic assistance to launch a set of parallel simulation processes within a 
standard high-performance computing (HPC) cluster environment. The implementation of the current CCP 
version supports the input name scheme and output data format necessary to perform uncertainty and 
sensitivity analyses with SUSA. 

The commands of the CCP provide the basic functionalities in order to perform a set of simulation runs in 
parallel on an HPC cluster in an automated and convenient manner. The CCP is implemented in the interpreter 
language python. The software in its current version supports running the ATHLET simulation code based on 
a set of SUSA-generated input files on an HPC cluster. Nevertheless, in principle the CCP can be adapted to 
any simulation code and input file name scheme. Since so far SUSA de-pends on a Windows operating system 
(OS) and the domain of application of the CCP depicts an HPC (Unix OS) cluster, the software is per design 
an independent and auxiliary add-on tool to SUSA. 

2 SUNSET (IRSN, INRNE, TUS) 

SUNSET is designed for personal computers or computer cluster. The calculations may be parallel or 
sequential. 

  

3 DAKOTA (ENEA, CIEMAT, TRACTEBEL) 

If the MPI package (specialised in parallel computing) is installed on Linux and with cautious management of 
the intermediate files to avoid conflicts (for example having each run in its dedicated subdirectory), the user 
can specify in the DAKOTA input that the sampled cases are to be distributed on a given number of CPU. 
Each case will run on one CPU and will be replaced by another when finished. 

4 URANIE (KIT, BELV) 

URANIE can run in Windows and Linux environments in parallel or sequential (MPI) mode. URANIE can also 
be launched on clusters with SLURM (curie at CCRT), LSF (tantale, platine at CCRT) or SGE (mars) with 
BSUB directives. It is also possible to use batch clusters in order to run several instances of a parallel code, 
mixing two levels of parallelism: one for the code, one for the design-of-experiments.  

In order to distribute computation the TLauncher run method can be also employed. It allows creating 
directories, copying files, executing jobs, and creating the output DataServer. All these operations are 
performed simultaneously, so that it is possible to delete execution directories as the computation are 
performed. 

Concerning the severe accident analyses, the ASTEC code can be run on clusters. KIT is exploring the 
possibility of performing ASTEC multi-runs on the ForLHR II cluster at the KIT Steinbuch Center of Computing 
(SCC) [1]. The architecture of the cluster allows working on up to 1155 nodes with 20 cores each with a 
theoretical peak performance of 832 GFLOPS at 2.6 GHz and 64 GB of main memory per node. 
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5 RAVEN (UNIROM1, JAEA) 

RAVEN is designed for personal computers and supercomputers, and computation can be in parallel or 
sequential. In collaboration with ENEA, MELCOR2.2-RAVEN will be used for large number of simulations at 
supercomputers of ENEA CRESCO HPC. This implementation is similar to the one of INL HPC which was 
replicated into the Sapienza Nuclear area HPC. 
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1 Data assimilation methods  (Task 1) 

1.1 MOCABA (FRAMATOME) 

1.1.1 Description of the method 

MOCABA [1] is a Bayesian data assimilation methodology for improving predictions of integral observables by 
combining uncertainty information on basic input parameters with information from integral measurements. In 
contrast to the widely used Generalized Linear Least Squares (GLLS) methodology [2], [3] MOCABA uses 
Monte Carlo sampling instead of first-order perturbation theory for uncertainty propagation. This allows one to 
apply Bayesian updating directly to the integral observables of interest without taking the detour via updating 
the input parameter distributions. As a result, MOCABA does not require the computation of any sensitivities 
of the integral response variables with respect to input parameter variations. 

The objective of the MOCABA framework is to make predictions about an (in general multidimensional) 
observable, represented by a vector function  of a parameter vector , taking into account observations 

 of a vector function  of a parameter vector . For example,  may represent the time-
dependent source term during a severe accident,  may represent a set of observables measured during 
accident progression (e.g. dose rate measurements), and  and  may represent sets of input parameters 
determining the values of  and , e.g. physical parameters determining the fission product release rates 
from the core melt.1 

It is assumed that the uncertainties of  and  are completely determined by the uncertainties of 
the corresponding parameter vectors  and . Hence, collecting the components of  and  in a combined 
parameter vector , the uncertainties of  and  are defined by the uncertainty of . To quantify this 
uncertainty,  is identified with a random vector defined by a probability density function (pdf) . Collecting 

 and  in a combined vector, 

, , (1)

allows us to express the uncertainties of  and  in terms of the pdf  of the response vector , which is 
completely defined by . 

Bayes’ theorem allows us to combine information from measurements  of , expressed in terms of a 
likelihood function | , with the prior information represented by . This yields the posterior pdf 

|  of : 

| ∝ | .  (2)

If the Bayesian updating shall be applied to the input parameter vector ,  is simply identified with  in 
Eq. (2), which yields the posterior pdf of : 

| ∝ | .  (3)

Within the basic MOCABA framework, a multivariate normal distribution model is assumed for the prior pdf 
 of the integral observable :2 

, ∝ exp
2

, , (4)

with 

, , .  (5)

                                                      
1  It should be noted that we are generally interested in observables  for which the uncertainties of  and  are dominated by 

parameters common to both  and . If this is the case, observations  of  have the potential to significantly improve our 

knowledge about  [21]. 
2  As mentioned in [22], it is straightforward to extend the model space to more general classes of multivariate distribution models by 

making use of invertible variable transformations. However, such model expansions hardly change the inferences for most application 
of interest (see [5]). 
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 is the vector of prior application case and benchmark observables, and  is the corresponding prior 
covariance matrix due to input parameter uncertainties. 

To calculate the prior model parameters,  and , random samples of the parameter vector  are drawn 
from the pdf . For each random draw , the corresponding value  is calculated. The prior 

mean vector and prior covariance matrix are then estimated by applying the corresponding unbiased 
estimators to the Monte Carlo data: 

1
,				

1
1

. (6)

In the above equations,  is the number of Monte Carlo draws. The measurements of  are expressed in 
terms of the measurement vector , whose uncertainty is expressed in terms of the likelihood function 

| . For the basic MOCABA framework, the likelihood function is also expressed in terms of a normal 
distribution model: 

| ∝ exp
2

, .  (7)

Here,  is the covariance matrix of  due to experimental or measurements uncertainties. Inserting Eqs. 
(4) and (7) into Eq. (2), yields a normal posterior pdf of : 

| ∗, ∗ ∝ exp
∗

2
, ∗ ∗ ∗ ∗ ,  (8)

with the posterior model parameters: 

∗ ∗ , ∗ , ∗
∗ ∗

∗ ∗ , (9)

∗ , (10)

∗ , (11)

∗ , (12)

∗ , (13)

∗ . (14)

Instead of parameterizing the experimental uncertainties in terms of the likelihood covariance matrix , they 
may also be included in the prior covariance matrix . If all experimental uncertainties are included in , 
the likelihood covariance matrix  becomes zero in the above updating formulas. 
Generalizations of the basic MOCABA framework, taking into account measurements and constraints of linear 

combinations of variables and more general classes of distribution models, are discussed in [4] and [5]. 

1.1.2 Description of main features 

MOCABA is a general mathematical framework, which is not restricted to any specific computer 
implementation. Software implementations have been realized by different institutions for different 
applications, including criticality safety analysis ( [1], [6], [4], [7], [8]), reactor cycle predictions [9], and nuclear 
data adjustment ( [10]).  

Within the MUSA project, the MOCABA framework will be used for the prediction of severe accident quantities, 
such as the source term, taking into account the information from measured plant data. 

Typical software implementations of MOCABA calculate as “by-products” other useful statistical quantities 
such as correlations between different responses and between input parameters and responses, as well as 
sensitivities of responses w.r.t. input parameter variations. 
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1.1.3 Pros and Cons 

Because of its generality, the MOCABA framework is applicable to a wide class of different application cases. 
Applying MOCABA to a Monte Carlo uncertainty propagation analysis, Monte Carlo sampling of input 
parameters has to be performed with a dedicated Monte Carlo code. 

It has been demonstrated by different institutions that the MOCABA method is very efficient and has the 
potential to significantly improve the predictions of integral observables. 

Statistical software packages commonly used in nuclear engineering (URANIE, DAKOTA, SUNSET etc.) 
generally do not include MOCABA implementations. Hence, analysts may have to write their own software 
implementations in order to use the MOCABA method within their Monte Carlo uncertainty propagation 
analyses. Writing such software implementations is straightforward but requires some knowledge in computer 
programming and numerical linear algebra algorithms. 

 

1.2 NEMM (NINE) 

1.2.1 Description of the method 

NINE Evaluation Model Methodology (NEMM) is a comprehensive methodology capable to address the 
essential requirements of the safety analysis process: 

 Validation and improvement of the computational tools; 
 Development of adequate plant models; 
 Qualification of the simulation results; 
 Quantification of the uncertainties associated with the predicted results. 

NEMM was developed as a flexible and modular tool primarily for licensing applications either using Best 
Estimate Plus Uncertainty (BEPU) methodology or a conservative approach. Currently, NEMM can be applied 
for the development of Thermal-Hydraulics (TH) Evaluation Models, as well as coupled TH and Reactor 
Physics codes. However, the concepts and the elements of NEMM are applicable to the SA domain. Thus, 
NEMM can be extended from DBA or DEC to SA analysis, although with some simplifications and adaptations, 
as illustrated in the next Subsection. 

The key characteristics of NEMM can be summarized as: 

 The extensive use of experimental data; 
 The possibility to validate and as well to improve a system code; 
 The application of a systematic procedure to qualify simulation results; 
 The comprehensive treatment of the uncertainty sources; 

In order to deal with all the features listed above, specific procedures have been developed. As depicted in 
Figure 1 and summarized in Table 1, NEMM is organized in semi-independent modules. Depending on the 
objectives of the analysis and on the adopted approaches, only selected modules may be applied focusing on 
the considered target applications. For example, code validation process can be addressed by the 
“Computation Tools Development and Validation” module. 

Within MUSA framework, the “SM & SMT Uncertainty Quantification” module will be the focus of NEMM 
application to SA domain. NEMM provides two steps for the computation of Uncertainty: 

 Code with Internal Assessment of Uncertainty (CIAU), which will be detailed in the next subsection; 
 Predictive Model Methods, which employ a Data Assimilation strategy to optimize some parameters 

of the code models in order to improve the code response. 

In MUSA only the CIAU method will be applied, since the Predictive Model Methods are not yet mature enough 
for the transition from TH to SA. It must be pointed out that the application of CIAU envisages the execution of 
at least the first two NEMM modules, namely the “NPP Selection” and the “Computation Tools Development 
& Validation”, in order to guarantee the correctness of uncertainty evaluation. 
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Figure 1: General scheme of the complex relationship between NEMM modules 

 

 

 

 



D.3.1 Appendix-4 
 

www.musa-h2020.eu     10 

Table 1: Short description of NEMM modules relative to TH application. 

# MODULE DESCRIPTION OUTPUT 

1 NPP Selection The NPP, object of the analysis, is identified. 
All the necessary information and data to 
simulate the NPP are collected including the 
relevant phenomena. 

 The data necessary to build 
a SM of the plant 

 The phenomena to be 
considered in the SM 

2 Computational 
Tools 
Development 
and Validation 

Selection of the computational tools to 
perform the analysis and execution of the 
validation process of Computational tools to 
demonstrate the capability to simulate 
needed phenomena. 

 The validated SM techniques 
and the validated code to be 
applied for the target 
application 

 SM accuracy data to be used 
for uncertainty evaluation 

3 NPP Simulation 
Model 
Development 

Use of the collected information (SM 
Techniques) and data to develop a NPP SM 

 The NPP SM 

4 Qualification of 
NPP 
Simulation 
Model 

Demonstration that the SM of the NPP is 
capable to properly simulate the selected 
transients/accidents. Adoption of the “Kv 
Scaled calculation” 

 The qualified NPP SM 

5 Simulation 
Model (SM) 
and Simulation 
Model 
Techniques 
(SMT) 
Uncertainty 
Quantification 

Evaluation of uncertainty due to code 
models, input code model parameters, initial 
conditions of the NPP. Consideration of the 
scaling issue for uncertainty evaluation. 

 Uncertainty Quantification 

6 NPP Evaluation 
Model and 
Simulation 

Selection of the PIE and Assumptions for the 
carrying out the NPP safety analysis. Top-
down scaling analysis to support the NPP 
Evaluation Model and Simulation results. 

 NPP evaluation model and 
the calculation results 
adopting BE/BEPU, 
Conservative or Combined 
approach 

 

1.2.2 Description of main features 

NEMM breaks down the Uncertainty Quantification into three main components, each of which is treated 
separately: 

1. Code phenomenological models; 
2. Initial conditions; 
3. Scaling. 

For the quantification of the uncertainty related to code phenomenological models, NEMM envisages the use 
of CIAU (Code with the capability of Internal Assessment of Uncertainty). The main feature of CIAU is the 
estimation of uncertainty through the comparison with experimental results. However, a thorough selection of 
the experimental data available must be obtained before the CIAU application to the selected Simulation 
Model. The experimental facilities that can indeed be considered as part of the analysis must be characterized 
by the reproduction of the phenomena of the NPP under examination. Thus, Integral Test Facilities (ITF) or 
Separate Effect Test Facilities (SETF) reproducing downscaled conditions of selected NPP systems are used, 
in addition to available data from accidents/transients occurring in the full scale plants 

The CIAU method can be summarized in the following steps: 

1. First of all, the phenomena involved in the analysis of the selected NPP and accident scenario must 
be identified, along with the associated code models; 
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2. Once the object of analysis is selected, the main variables driving the selected NPP accident scenario 
are identified, constituting the so-called Driving Quantities; 

3. Available experiments reproducing the selected NPP accident phenomena are identified; 
4. Special procedures are employed in order to develop the Simulation Models reproducing the selected 

experiments. In particular, Simulation Model Techniques (SMT) for the creation of the SM and criteria 
for the SM validation are established; 

5. A multidimensional database is built, with each driving quantity corresponding a different dimension. 
The database is divided into hypercubic cells, each representing a NPP state identified by the 
coordinates of the hypercube in the dimensions of the data base. 

The final output consists of the NPP uncertainty related to the code phenomenological models inside each 
hypercube obtained treating the accuracy in the hypercubes collected comparing experimental data and the 
related calculations by code application. Once the multidimensional database is filled with uncertainty NPP 
level can be finally computed. The list of output quantities, on which the uncertainty is calculated, is associated 
and limited to the experimental measurements available for analysis, both at the test facility and NPP level. 

For this reason, the extension to SA is associated with the crucial issue of the availability of experiments. While 
in TH domain numerous ITFs reproducing NPPs phenomena with high degree of fidelity are available, in SA 
field it is more difficult to find facilities reproducing NPP systems, either due to a smaller number of ITFs 
available and due to the minor attention to reproduce downscaled NPP systems in SETFs, often devoted to a 
specific group of phenomena. As a consequence the application of CIAU method to SA must be adapted and 
simplified. 

The idea is to build up one multidimensional database for each key phase/phenomenon occurring in most of 
SA sequences, such as Core degradation, FP release and deposition, etc.. Focusing on few phenomena 
reduces the requirements for the full scale experimental facilities and will enable to widen the spectrum of ITFs 
and SETFs selectable for the application of the CIAU method. This modification has the consequence to create 
several multidimensional databases, where the hypercubic cells do not represent anymore a state of the NPP, 
but a state of a selected system referred to a particular phenomenon. The uncertainty calculated for each 
phase/phenomenon will be finally aggregated to find a unique value of uncertainty related to the code 
phenomenological models. 

Regarding the uncertainty related to the initial conditions, the UQ is performed through the statistical methods. 
The initial condition quantities are sampled from probability density functions and multiple calculations are 
performed in order to compute a statistical distribution of results.  

The scaling uncertainty component is related to the different scale and distortion between the test facilities and 
the full-scale NPP. Scaling uncertainty can be estimated through a combination of top-down and bottom-up 
scaling analyses (e.g. Fractional Scaling Analysis). However the evaluation of this components is quite 
complicated and preliminary a bias can be considered base on engineering judgment. 

Finally, the component of uncertainty are aggregated together in order to provide for the final uncertainty value 
for the NPP analysis. 

1.2.3 Initial conditions  

The uncertainty on initial conditions is treated completely with the statistical method by NEMM. 

 

1.2.4 Boundary conditions 

The uncertainty on boundary conditions is treated completely with the statistical method by NEMM. 

 

1.2.5 Model parameters 

The uncertainty on code phenomenological models is calculated through the application of the CIAU model by 
the comparison of the Simulation Model results with the experimental data from Integral Test Facilities (ITF) 
and Separate Effect Test Facilities (SETF). 
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1.2.6 Propagation of uncertainties 

The three components of uncertainty are connected with Simulation Model by (code and nodalization), initial 
and boundary conditions and scaling. They are aggregated with special mathematical functions. While the 
uncertainty related to initial and boundary conditions is propagated trough the code applications, the simulation 
model uncertainty is not propagate by the code application, but is obtained by accuracy treatment and applied 
at the code output. Currently, the scaling uncertainty is a bias directly applied to the code output. 

 

1.2.7 Pros and Cons 

The CIAU method is able to provide a quantification of the validation of the Simulation Model and of the 
Simulation Model techniques. Namely, the UQ takes into account not only the accuracy related to the 
application of the code model correlations to the spectrum of the selected phenomena, but considers as well 
the influence of the nodalization applied to the NPP. 

Moreover, the application of the CIAU method points at a broader definition of uncertainty with respect to a 
simple statistical method. The experimental results are taken into account in the UQ by estimating the accuracy 
affected by the deviation between the predictions of the code model and the experimental measurements. 

The application of CIAU requires a preliminary deep analysis of the phenomena occurring in Severe Accident 
domain. A large number of simulations of experiments are necessary in order to build CIAU multidimensional 
database, requiring an important effort in terms of time, computational resources and availability of qualified 
users. Moreover, the limited number of experiments poses a limitation of the extent of CIAU application to SA 
domain. The scope of NINE for MUSA is to focus NEMM application to the Core Degradation phase. On the 
opposite the application by the final user does not request multiple calculations and HPC application 

Finally, CIAU application is strongly code-dependent: CIAU multidimensional database must be entirely built 
from scratch when passing from one code to another. 

 

1.3 Experience from the application of data assimilation methods (Task 2) 

1.3.1 MOCABA (FRAMATOME) 

Framatome GmbH is the developer of the MOCABA methodology. Since its introduction in 2014, Framatome 
and other institutions (including GRS, UPM, PSI, EPFL, and ANSWERS) have been using MOCABA for 
different applications, including criticality safety analysis, reactor cycle predictions, and nuclear data 
adjustment [1], [9], [6] , [10] , [4], [7], [8]. Since 2019, there is an R&D cooperation between KIT and Framatome 
involving the development of data assimilation methods and tools based on the MOCABA methodology for 
severe accident analysis. 

1.3.2 NEMM (NINE) 

NEMM has been extensively applied to the TH domain and is nowadays accepted by regulatory bodies in the 
frame of Best Estimate Plus Uncertainty (BEPU), conservative and combined approaches. It was fully applied 
to the licensing activities of the Atucha II NPP with a BEPU approach for the preparation of the Chapter 15 of 
the Final Safety Analysis Report (FSAR), which envisaged the analysis of 83 accident scenarios. The Atucha 
II NPP was successfully licensed in 2015. In addition, NEMM was also applied in the frame of core design 
activities for a SMR-PWR in Brazil. Some NEMM modules were applied for the Multiphysics analysis of the 
core response due to a postulated Control Rod Ejection, using the BEPU approach. 

The Uncertainty Quantification module of NEMM has not been yet applied to any Severe Accident analysis. 
However, the concepts and the elements of NEMM are theoretically directly applicable to the SA-domain. 
Thus, NEMM can be extended from DBA or DEC to SA analysis, although with some simplifications and 
adaptations.  
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1.4 Potentials for HPC-applications (task4) 

 

1.4.1 MOCABA (FRAMATOME) 

MOCABA is a general data assimilation framework, which is not linked to any specific software implementation. 
Implementations for HPC are possible if necessary. 

1.4.2 NEMM (NINE) 

The use of HPC is not envisaged since the final user application of NEMM for the UQ does not request either 
multiple calculations or the use of large computational power. The most demanding phase of the CIAU method 
is represented by the setup of the multidimensional database, which requires the use of tens of experimental 
tests in order to provide an appropriate uncertainty quantification. This in turn requires an important effort in 
terms of time, computational resources and availability of qualified user. 
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1 Numerical Noise 

1.1 Introduction to Numerical Noise 

Complex, iterative calculations such as those performed by integral severe accident codes can be subject to 
numerical noise. This is the effect of small perturbations to the inputs of the calculation causing chaotic (i.e. 
unpredictable) and non-trivial changes to the output quantities that are not necessarily commensurate with the 
scale of that perturbation. Numerical noise is distinct from an aleatory and epistemic uncertainties, where the 
output values should be well behaved (or change) with respect to some correlation function of the input 
quantities. Output variability due to numerical noise has been noted by users of integral severe accident codes 
and studies have been reported by Sandia National Laboratories as part of its Fukushima Daiichi Unit 1 
uncertainty analyses [1], [2]. In these MELCOR studies, numerical noise was exhibited as a result of both small 
perturbations to input parameters and extrinsic effects, such as the ordering of input deck units such as flow 
paths. Flow path reordering can occur automatically when an input deck is processed through the analysis 
platform SNAP and results in a reordering of the elements of the matrices that are loaded into MELCOR’s 
implicit solvers. This produces slight calculational variations due to the non-commutative nature of 
mathematical operations on floating point binary numbers. 

A simple quantitative example demonstrating the effect of numerical noise in a MELCOR calculation was set 
up, in which the radius of the lower head of a test deck was varied from its nominal value by less than the width 
of a hydrogen atom (~10-10m). The resulting time to lower head failure was observed to change by roughly 5%. 
Clearly, such observations are not physical and prompted further investigation. Two potential problems were 
identified: there is an inherent numerical uncertainty in some integral severe accidents codes that needs to be 
understood for a rigorous uncertainty calculation, and it is possible that any genuine, physical uncertainty could 
be conflated with the effects of numerical noise causing an incorrect assessment of the results.  

Mathematical simulations of classical physics will perfectly reproduce the experiment on the condition that the 
equations that describe the physics are comprehensive, such that all physical phenomena that describe the 
behaviour of the Figure of Merit (FOM) are captured mathematically. Unfortunately, this ideal case is typically 
limited to physics that can be fully described by explicit equations and often relates to simple hypothetical case 
studies. In practice, the simulation of physics phenomena in a nuclear plant will involve the solutions to implicit 
and semi-implicit equations and the integration of equations that do not have an analytical solution. In these 
situations, numerical methods are required to determine the solutions to these problems. However, the solution 
often involves the iterative convergence of equations where the accuracy of the solution will depend on a 
subjective convergence tolerance, which is chosen to balance accuracy with pragmatic code run times. 

The growth of these initially very small differences between similar calculations may be attributed to the large 
number of steps the calculation must make, the finite precision of how computers store data, and the feedback 
of a single initial perturbation ultimately causing perturbations to many different values. For example, consider 
the following sequence of events: 

1. A calculation is started in which the pressure in a single control volume has been modified from the 
original value by a tiny amount; 

2. MELCOR will attempt to equalise the pressure between adjacent control volumes and thus the 
perturbation will quickly spread to all linked control volumes; 

3. This will affect the heat transfer rate to and from the control volumes, as well as the flow rate between 
control volumes (which will further change the heat transfer rate); 

4. The temperature of the core and any surrounding heat structures will change because of the different 
heat transfer rates into the control volumes; 

5. The change in temperature of the surrounding materials will cause a pressure difference in the system, 
including the control volume with the single initial difference. 

With this particular example, it is quite clear that an initial perturbation to an input of the calculation can affect 
large areas of the calculation in relatively small number of time steps. Although in a single iteration of the given 
example, the perturbations to the calculation will not grow in any meaningful way, continued iterations as the 
transient progresses can cause significant divergences between different calculations. 
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For MELCOR, which models a large number of different phenomena, it is postulated that different parts of the 
calculation will be more susceptible to numerical noise than others as the underlying physics and equations 
that describe that physics will be very different. The growth of noise is expected to be especially prominent in 
non-linear parts of the calculation. For example, calculations involving exponents, particularly to large powers, 
will increase the divergences between two initially similar values. For this reason, the oxidation of core 
materials is expected to cause the largest divergence between different calculations. 

The discussions of numerical noise in this subsection are primarily with respect to observations in MELCOR, 
with which the analyses presented were performed. However, it should be noted that numerical noise will likely 
be present and affect all similar calculations, including those performed by other integral severe accident 
codes. 

1.2 Investigations into Numerical Noise 

To characterise numerical noise, four key questions need to be answered: 

1. Which input parameters, if any, are most responsible for noise? 
2. Do the effects of noise grow if multiple input parameters are varied? 
3. How can a physical uncertainty be distinguished from numerical noise? 
4. How does the geometric size and complexity of the input model affect numerical noise? 

Two test cases were prepared for the purpose of answering these questions. The first was a small-scale, 
simple PWR deck that was designed to run quickly and was loosely based on a single module of a NuScale 
SMR which undergoes a loss of coolant accident. A short run time was useful due to the large number of 
calculations that were performed to produce the results presented in this section. The second deck was a full-
plant model of a typical BWR which undergoes a complete station blackout. This deck was developed to be 
distinct from the small PWR deck, in that it is large-scale, complex, and takes longer to run. Any differences in 
the results between the two decks could be used to interpret how scale and complexity affect numerical noise. 

A series of studies was performed to address the questions listed above, in which the following input 
parameters were trialled: 

 The inner radius curvature of the lower head; 

 The initial temperature of the water in the lower head; 

 The mass fraction of carbon in the definition of stainless steel (with a corresponding change in the 
mass fraction of iron); 

 The free fall velocity of debris into the lower head; 

 The operating power of the reactor prior to SCRAM; 

 Multiplicative coefficient of the Arrhenius equation governing the rate of Zircaloy oxidation; 

 The emissivity of the cladding inner surface; 

 The equivalent hydraulic diameter of the cladding’s outer surface. 

The parameters were chosen not for their suspected inherent uncertainty within the input deck model but 
because they can each be a source of noise that would affect very different parts of the calculation. It can then 
be identified if any can be precluded from contributing to a variation in the output distributions or if any are 
particularly responsible for numerical noise. They also have different relative importance to the calculation to 
assist in understanding the sensitivity of the calculation to the different parameters. The nominal values of 
these parameters are given in Table 1 along with the standard deviations governing a set of tiny perturbations 
that would be small enough to be immeasurable with respect engineering tolerances. The sampling method 
assumes that each parameter is perturbed with respect to a normal probability density function.  

 

Table 1 - The inputs to the parameter perturbation studies. 



Appendix-5: Noise Analysis 

www.musa-h2020.eu     9 

Parameter PWR Mean 
PWR Std. 
Dev 

BWR Mean 
BWR Std. 
Dev 

Lower head radius of 
curvature 

2.6715m 10-6m 5.325m 10-6m 

Lower head initial 
temperature 

531.0K 10-6m 551.15K 10-6m 

Carbon (iron) mass fraction 
in steel 

0.0003, (0.74) 10-10 0.0003, (0.74) 10-10 

Debris fall velocity 4.4m/s 10-8m/s 1.0m/s 10-8m/s 

Reactor operating power 300MW 1W 3.926GW 1W 

Zirconium oxidisation 
coefficient 

29.6kg2/m4s 10-6kg2/m4s 29.6kg2/m4s 10-6kg2/m4s 

Cladding emissivity 0.325 10-8 0.325 10-8 

Cladding equivalent hydraulic 
diameter 

9.5x10-3m 10-10m 0.01026m 10-10m 

 

A series of output quantities were used to assess the effects of noise on key quantities of interest throughout 
the progression of a severe accident, ranging from timings of events occurring early in the transient, through 
to source term FOMs. These are: 

 The time to the onset of oxidation (denoted T_OXID); 

 The time to the onset of core melting (denoted T_MELT); 

 The time to lower head failure (denoted LH_FAIL); 

 The total mass of hydrogen produced in-vessel (denoted MH2); 

 The total radioactive mass released from the core (denoted RN1_REL); 

 The total mass of radioactive aerosol released to the environment (denoted ARM); 

 The total mass of radioactive vapour released to the environment (denoted VRM). 

Each of the input parameters was varied within separate uncertainty analyses, using a method in which 
DAKOTA was coupled to MELCOR using Python code, in order to determine how the output quantities varied 
with the input values individually. The amount of variation in the input parameters was chosen to be sufficiently 
small so as to expect no significant change in the output due to any real physical process, refer to Table 1. An 
additional analysis was performed where all eight input parameters were perturbed simultaneously. The results 
of these tests can be seen in Figure 1, which illustrates the spread in the calculated time to lower head failure. 
The ranges of the plots in Figure 1 where chosen to include all the data and to match between subplots to 
allow an easy visual comparison of the results. 

Three key points of interest in Figure 1 are, firstly, that the spread in the results is much larger than would be 
naïvely expected. This shows that perturbations to the inputs to a calculation can lead to output variations far 
larger than the relative size of the perturbation, without necessarily corresponding to any physical response. 
In this case, the standard deviations of the distributions in Figure 1 are approximately 3%, which, compared to 
the perturbations from the nominal input values defined in Table 1 is several orders of magnitude higher. 
Secondly, the individual inputs tend to produce similar outputs, suggesting that numerical noise is not 
dominated by a particular input parameter or set of parameters (though this pilot study was necessarily limited 
to a subset of all possible parameters). Lastly, the spread in results when all eight parameters were varied is 
very similar to the other individual plots. This indicates that numerical noise does not accumulate with the 
number of parameters varied. This is important, since it qualifies numerical noise as an underlying and 
relatively fixed uncertainty to a calculation, rather than a quantity that could overwhelm a calculation if a large 
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number of input uncertainties were considered. However, it is clear that the effect of numerical noise could be 
conflated with a genuine physical uncertainty and therefore must be well understood as part of a rigorous 
uncertainty analysis. 

 

Figure 1: The variation in time to lower head failure for a set of different small-perturbation input 
uncertainties for the small-scale PWR deck. 

Figure 2 shows the equivalent plot to Figure 1 but for the full-plant BWR deck instead of the small-scale PWR 
deck. The differences between the plots demonstrates that the effects of numerical noise can differ between 
input decks. In particular, Figure 2 includes outliers that exist further from the central tendency of lower head 
failure time than in Figure 1, illustrating the need to understand numerical noise as part of a rigorous uncertainty 
quantification, as an analyst would have no indication whether a single deterministic result was an outlier in 
such a distribution when viewed in isolation. 
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Figure 2: The variation in time to lower head failure for a set of different small-perturbation input 
uncertainties for the full-plant BWR deck. 

 

The distributions in Figure 1 and Figure 2 are not perfectly normal. In some cases, the MELCOR calculation 
may diverge to a degree where a different physical model is applied or some process does or does not happen; 
such divergences become more likely as the accident sequence progresses. This can lead to more 
complicated distributions of results, as seen in Figure 3. This is the analogous plot to Figure 1 but shows the 
total mass of radioactive vapour released to the environment at the end of the calculation, instead of the time 
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to lower head failure. Since this value is obtained from the calculation after lower head failure has occurred, 
there will have been a greater number of calculation cycles and therefore increased opportunity for different 
runs to diverge. These more complicated distributions demonstrate an important result that cliff-edge effects 
can manifest even in cases that are almost identical physically, with the divergence entirely due to numerical 
noise. 

 

Figure 3: The variation in fission product vapour mass released to the environment FOM for a set of 
different small-perturbation input uncertainties for the small-scale PWR deck. 

The chaotic nature of numerical noise was confirmed by examining the correlation (based on Pearson’s 
product-moment method) between the inputs and the outputs. Figure 4 shows that there is no statistically 
significant correlation between any of the inputs and outputs when the input perturbations are minuscule, as 
in this study. 
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Figure 4: The partial correlation matrix between all inputs and outputs for the small-scale PWR deck. 

Similar results are observed for the large-scale BWR deck. Figure 5 shows the equivalent plot to Figure 3, but 
for the BWR deck instead of the PWR deck. The plots in Figure 5 are significant because they demonstrate 
that numerical noise can cause divergences such that in some cases, no radioactive vapours are released to 
the environment during the calculation period, while in other cases, significant masses are released. This 
indicates that numerical noise has the potential to affect whether or not important cliff-edge events, such as 
containment failure, are invoked. For example, a Fuel-Coolant Interaction (FCI) event may trigger a pressure 
spike that is sufficient to breach a defined containment failure threshold in some runs, while not quite reaching 
that threshold in others. Alternatively, a quantity such as pressure may be slowly approaching a defined 
threshold, meaning that small differences between runs can result in large variations in the time at which that 
threshold is reached or whether it is reached at all before the calculation end-point is reached. It is also 
important to note that limits such as withstand pressures, and criteria for the failure of structures such as fuel 
rods and components such as Safety Relief Valves (SRVs), are themselves subject to significant uncertainty. 

Additionally, the differences in shapes between Figure 3 and Figure 5 indicate that effect of numerical noise is 
plant model and accident scenario dependent, and therefore should be analysed on a case-by-case basis. 
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Figure 5: The variation in the fission product vapour mass released to the environment FOM for a set 
of different small-perturbation input uncertainties to the full-plant BWR deck (equivalent to Figure 3). 

A direct comparison of the results of the small-scale PWR deck and the full-plant BWR deck runs with all 
parameters varied is provided in Table 2. Note that although the standard deviation is used to compare the 
spread in results for the two test decks, an actual assessment of the uncertainties on these quantities would 
likely be more complicated, depending on the distribution of results. This limitation is clear for distributions 
such as those in Figure 5, which, due to a significant fraction of the outputs returning zero, lead to very large 
percentage uncertainties. It also means that, for cases where the distributions are not the same shape, such 
as the vapour mass released for the PWR and BWR decks, that a direct comparison is not valid. These are, 
however, included in Table 2 as a clear demonstration of how different the results can be between input decks. 

Table 2: The mean, standard deviation and percentage variation (defined as the std. dev. divided by 
the mean) of the output quantities for both input decks with all input parameters varied. 
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 PWR BWR 

Output Mean Std. Dev. % Mean Std. Dev. % 

MH2 (kg) 38.63 1.12 2.9 2342 50 2.1 

RN1_REL (kg) 130.7 1.2 0.92 975.3 65.4 6.7 

ARM (kg) 78.36 0.75 0.10 2.15 2.51 117 

VRM (kg) 31.377 0.003 0.010 21.4 27.6 129 

T_OXID (s) 1752 2 0.11 4620 49 1.1 

T_MELT (s) 1936 2 0.10 7058 55 0.78 

LH_FAIL (s) 17669 569 3.2 36544 1731 4.7 

It is clear from Table 2 that the magnitude of numerical noise is significantly different between the two test 
decks. The percentage uncertainties are larger for the full-plant BWR deck than the small-scale PWR deck for 
most of the output quantities. This could be due to either the increased complexity of the BWR deck or that the 
transient occurs over a significantly longer time period with a greater number of time steps, or some 
combination of the two. Rigorously determining the effects of deck complexity and transient duration is not 
possible without significant further analysis. However, this limited study indicates that more complex decks 
with long transient times may be more susceptible to numerical noise. These results further demonstrate that 
numerical noise should be addressed on a case-by-case basis. 

As mentioned in Section 1.1, shuffling of input deck units such as control volumes, flow paths and heat 
structures, reorders the elements of the matrices that are loaded into MELCOR’s implicit solvers. Small 
calculational variations are then introduced due to the inherent nature of floating point binary numbers, which 
are often an imprecise representation of the real decimal number from which they are converted. This limitation 
in precision means that the outputs of mathematical operations cannot be guaranteed to behave as 
commutative when executed with machine code and can therefore be dependent on the order in which they 
are performed. Once a small perturbation is introduced, it will propagate in a similar way to a minuscule change 
to an input parameter, producing a similar numerical noise distribution when a large set of unique input decks 
is run. 

A further study was performed to assess numerical noise driven by changes to the ordering of input deck units, 
with the example of flow paths considered. For this study, a series of calculations was set up for the PWR deck 
that differed only by the ordering of the flow paths, which were randomly shuffled for each case. Figure 6 shows 
the spread in results from this study. The distributions of the results appear similar to those where the 
parameters have been subjected to minor perturbations, indicating that the underlying cause of the differences 
in results with the flow paths shuffled is also numerical noise and that the re-ordering is equivalent to a 
miniscule perturbation in input values.  
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Figure 6: The outputs of a series of MELCOR calculations with the ordering of the flow paths 
randomly shuffled in the small-scale PWR deck. 

To understand the distinction between numerical noise and a genuine uncertainty, the analysis where the 
parameters were varied was repeated for the variation in reactor operating power, but for a series of different 
input perturbation sizes. Input perturbations were chosen according to a normal distribution, in sets, with 
standard deviations covering several orders of magnitude. Figure 7 and Figure 8 show how the spread in 
output results changes with the size of the input perturbation for the output quantities of time to lower head 
failure and mass of radioactive vapour released, respectively. For lower values of the perturbation, there is no 
statistically significant change in the spread in the output quantities, indicating that there is no “physics signal” 
and that numerical noise dominates in this region with no correlative physical effects observable. At an 
uncertainty value of around 106W - 107W (corresponding to roughly a 0.3% - 3% uncertainty in reactor power), 
the spread in results starts to grow, suggesting that the threshold between noise and uncertainty is around this 
value. Above this threshold, the spread in results is much larger, indicating that the physical uncertainty on the 
input parameter is dominating over numerical noise. 

The transition between numerical noise and physical uncertainty appears to be different between Figure 7 and 
Figure 8. This indicates, as would be expected, that different output quantities are affected differently for a 
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particular input quantity, i.e. each chosen parameter will have a distinct signal to noise threshold for a given 
uncertainty analysis. 

 

Figure 7: The spread in time to lower head failure for different input perturbations to reactor 
operating power for the small-scale PWR deck. 

 

Figure 8: The spread in mass of radioactive vapour released to the environment for different input 
perturbations to reactor operating power for the small-scale PWR deck. 

Figure 7 and Figure 8 demonstrate that as the input uncertainty increases, the output uncertainty will at some 
point dominate over numerical noise, while Figure 1 and Figure 3 demonstrate that the effects of noise do not 
combine. It may therefore be tempting to an analyst to discard an input parameter as having a negligible effect 
on results if the corresponding output cannot be distinguished from numerical noise. However, it is possible 
that there is a point where the input perturbation is not large enough to dominate over noise when studied in 
isolation, but is still having an effect on the results, particularly if there are several such parameters.  In this 
case, the effects of multiple input parameters may combine, and thus it may not be appropriate to neglect the 
input parameter, depending on the magnitude of the uncertainty from other parameters. 

To check for this, and to test whether the increase in the spread of results seen in Figure 7 and Figure 8 is not 
due to noise that is simply of a larger magnitude, the partial correlation matrices between input and outputs 
are shown in Figure 9 for the 10-1, 106 and 108 perturbations. The correlations for all tested input perturbation 
sizes are shown in Figure 10. The correlation between reactor operating power and the seven output metrics 
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is much stronger with the larger perturbations, with no statistically significant correlation for the 10-1W 
perturbation, demonstrating that noise is chaotic in nature. It is clear when comparing these to Figure 7 and 
Figure 8 that the correlation starts to increase before the output distribution becomes dominated by the physical 
uncertainty. This also shows that the threshold between noise and a physical uncertainty can be characterised 
by the correlation between inputs and outputs. However, it is clear from the 106W case, that the threshold 
where physical uncertainty dominates is different for different output quantities, with the mass of the radioactive 
vapour (VRM) released being the most sensitive. 

 

Figure 9: The correlation matrices for reactor operating power for an input uncertainty of 10-1W (left) 
106W (middle) and 108W (right). 

 

 

Figure 10: The correlation between reactor operating power and the seven output metrics for a range 
of different input uncertainties. 

Figure 9 and Figure 10 demonstrate that the distinction between numerical noise and a physical uncertainty 
should be made using both the size of the output distributions and the strength of the correlation between 
inputs and outputs. 
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1.3 Time Step Optimisation Study 

The choice of time step in a calculation is made to balance pragmatic run times with the convergence of the 
solution. This trade-off may be further complicated by numerical noise, which is expected to grow with each 
time step. It may be that with smaller time steps, any biases intrinsic to the method of using time steps are 
reduced, but the distribution grows as a result of the larger number of calculation cycles required to reach a 
given problem time. 

Many different sources of physical uncertainty feed into an uncertainty analysis of a severe accident 
calculation. Some of these uncertainties are known to be very large, and for input parameters to which a given 
output FOM is particularly sensitive, only a small uncertainty can have a large effect on that FOM (as observed 
in Figure 8). It is therefore expected that, for a full-plant calculation which considers the most important input 
parameters, the uncertainty in the outputs will be dominated by physical uncertainties rather than numerical 
noise. Nevertheless, a study into the potential for time step optimisation against numerical noise is considered 
valuable, given that numerical noise has been observed to be significant in some calculations for some output 
quantities, and because numerical noise could broaden the distributions of results or reduce correlations even 
if it is sub-dominant to the physical uncertainties. 

In order to establish a well-defined set of guidelines for mitigating numerical noise, the effects of time steps 
need to be well understood. To this end, a study was conducted in which the same eight input parameters 
were varied through small perturbations, as with the previous study (see Section 1.2), but using a series of 
four different time step regimes. The actual MELCOR parameter that was modified for each case was the 
maximum time step size (DTMAX). The minimum time step size (DTMIN) was set at 1x10-8s for all cases for 
all times to allow MELCOR to adjust the time step to small enough values to satisfy internal convergence 
criteria without the calculation aborting. The four cases trialled were: 

1. Small time steps with DTMAX set to 1x10-2s for the entire calculation; 
2. Large time steps with DTMAX set to 10s for the entire calculation (encouraging MELCOR to progress 

at a pace determined by its time-step management algorithm); 
3. Nominal time steps with DTMAX set to 1x10-1s except for during the oxidation of core components, 

when the time step was set to 1x10-3s; 
4. Nominal time steps with DTMAX set to 1x10-1s except for during the core uncovery phase, when the 

time step was set to 1x10-3s. 

As with a normal MELCOR run, the choice of the smaller values of DTMAX was made to allow the analysis to 
complete in a reasonable run time. It should be noted that, in practice the actual time step used for these runs 
will not always be DTMAX, as the code will force a smaller time step during certain parts of the calculation. 
This is particularly true for the second case, which uses a DTMAX value that is significantly higher than would 
be applied in a detailed severe accident analysis; reduction of time steps to satisfy convergence criteria 
occurred frequently in this case.  

The four cases were chosen to enable direct comparison of the use of smaller and larger time steps to examine 
their effect on the output distributions, and to target specific areas of the calculation that may be responsible 
for numerical noise. The last two cases were chosen due to oxidation of core components being a highly non-
linear process and the core liquid level during boil-off having been observed to often be unstable for larger 
time steps. These cases are intended to give an indication of how time steps may be optimised for different 
phases of the accident. The analyses were only performed for the simple, small-scale PWR deck. 

The distributions for the time to lower head failure can be seen in Figure 11 for the four time step regimes. It 
can be seen that, in addition to the anticipated variation in results due to numerical noise, some bias is also 
evident. This is particularly manifest when comparing the case in which time steps of 10-3s are applied during 
the oxidation phase with the others; in this case, the main cluster of results for lower head failure occurs around 
10% later in terms of overall calculation time, compared with the other cases. The consequence of this with 
regard to the effect on the other output quantities considered is discussed later. 

A direct comparison of the results for onset of oxidation between the small and large time step cases is shown 
in Figure 12. This provides a clear example of how the solution can be biased depending on the choice of time 
step duration, with difference of around 0.4% observed in the median time to the onset of oxidation. However, 
it is noted that this distinction is not visible in all the output quantities. The distribution of the results for the 
larger time steps in Figure 12 is slightly narrower than the smaller time step case. This is believed to be due 
to the smaller number of calculation cycles required to reach this point. 
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Figure 11: The distributions of time to lower head failure for the PWR deck for the four different time 
step regimes. 

 

Figure 12: A direct comparison of the distributions in the time for the onset of oxidation for the small 
and large sets of time steps. 
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The results of the tests for the four time step regimes are provided in Table 3. The smallest and largest standard 
deviations of the distributions are highlighted in green and red respectively. It should be noted that the standard 
deviation is used to measure the spread in the results, but the interpretation of this with respect to a confidence 
level should not be assumed to be consistent with Gaussian statistics. It does however allow a crude 
comparison of the widths of the distributions for the four cases and is more valid for results such as the time 
to the onset of core melting and the mass of aerosol released to the environment, which more closely resemble 
normal distributions.  

Table 3: The mean and standard deviation of all selected output quantities for the four time step 
regimes. 

Result 
Small Large Oxidation Core uncovery 

Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev 

MH2 41.52 1.98 40.02 1.86 41.40 1.41 39.34 1.61 

RN1_REL 82.30 1.24 83.27 0.86 81.93 1.11 81.22 1.02 

ARM 33.48 0.75 32.35 0.88 32.79 1.12 32.46 0.98 

VRM 31.361 0.018 31.368 0.011 31.362 0.015 31.357 0.010 

T_OXID 1760.4 2.7 1755.5 2.1 1749.2 2.5 1755.0 2.7 

LH_FAIL 15889 1092 16076 848 17323 728 16261 745 

T_MELT 1946.9 2.9 1940.4 2.1 1934.7 2.5 1941.0 2.9 

The results given in Table 3 do not provide an obvious strategy for guaranteeing minimal numerical noise in a 
calculation, due to inconsistencies across the output quantities. However, the general trend reveals that 
smaller time steps will result in slightly wider distributions of results than the larger time steps. Since this trend 
is fairly loose and the narrowing of the distributions is small with larger time steps, it is expected that for most 
analyses the reduction in bias expected when smaller time steps are used would be preferable to a narrower 
distribution. This trade-off between bias reduction and the desire to minimize numerical noise will be at the 
discretion of the analyst on a case-by-case basis since the results shown in Table 3 are a specific case that 
does not replicate all possible input decks. It is further noted that the tendency towards a later time of lower 
head failure for the case with small time steps during the oxidation phase did not noticeably affect the other 
output quantities, for which all cases are relatively consistent. 

Clearly further work is needed to rigorously understand the effects of time step on the output distributions. This 
would be required before more thorough recommendations can be made regarding mitigation of numerical 
noise, such as whether time steps can be optimised for different phases of the accident. 

It was noted previously that the underlying cause of numerical noise was likely the fact that so many quantities 
in a calculation depend on each other, and the feedback of small initial differences repeated across many time 
steps. Since a typical severe accident calculation will evolve and change significantly near the start of the 
calculation, i.e. during boil-down, oxidation and melting, whereas in later parts of the calculation, such as the 
ex-vessel phase, changes occur relatively slowly, it would be expected that numerical noise grows faster in 
the earlier phases. This is important because it means an analyst need not be overly concerned about the 
duration of the calculation having a large effect on the extent to which the results are affected by numerical 
noise. Though it should be noted that calculations that run to a later problem time would be expected to have 
a slightly larger width of the output distributions resulting from numerical noise. 

1.4 Guidelines and Recommendations 

The following guidelines and recommendations with regard to numerical noise have been proposed based on 
the presented results and observations: 

 Numerical noise should be considered to form an inherent uncertainty to a calculation in severe 
accident codes. The results of a calculation should be treated as a distribution, rather than a single 
value, since there is no guarantee that any deterministic result is not an outlier within the noise 
spectrum. As demonstrated in Figure 1 and Figure 3, the results are not likely to be normally distributed 
and so use of a simple mean and standard deviation may not be sufficient to describe the distribution; 
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 For any comprehensive uncertainty quantification analysis, an appreciation of the extent to which the 
inherent numerical noise is affecting the relevant outputs to the calculation should be obtained. This 
can be achieved by running a large set of calculations in which input variables are perturbed by 
negligible amounts (i.e. well below the level at which any physical effect would be expected) to 
understand the magnitude of numerical noise. Similarly, a set of input decks that are physically 
identical and differ only in the ordering of input deck units such as control volumes, flow paths or heat 
structures, will also demonstrate a numerical noise distribution; 

 It is likely that input decks with greater complexity are more susceptible to numerical noise than 
simple decks. An analyst should consider this when preparing the input deck so as to avoid adding 
unnecessary complexity to the calculation. There may also be a trade-off between reducing biases 
and reducing numerical noise when considering extrinsic factors like model nodalisation, although 
this has yet to be studied; 

 An analyst should be aware that changes in results to calculations with varied inputs may not 
necessarily be physical. Any change to the inputs of a calculation will result in both a genuine, physical 
difference to the outputs of the calculation, and a resampling of the noise distribution. Failing to 
distinguish between these effects could lead to the incorrect interpretation of the relationship between 
the input and the results. A sufficient number of runs should be performed to enable a clear distinction 
between numerical noise and a physical uncertainty; 

 The uncertainty on the results of a calculation due to the uncertainty on an input parameter should be 
compared to the effects of numerical noise. This is to ensure that an input uncertainty is not incorrectly 
overstated in terms of its significance to the calculation. If the distribution of results for a set of input 
perturbations is not distinguishable from numerical noise, and the correlation between the inputs and 
all of the outputs is statistically indistinguishable from zero, then numerical noise is likely dominating 
over any genuine effects of the input parameters. If these criteria are met, and at the analysts 
discretion, these input uncertainties may be neglected from a full uncertainty analysis; 

 Numerical noise will still be present even in an uncertainty analysis strongly dominated by physical 
uncertainties. In this case, it will be a largely irreducible uncertainty. However, the analyst should still 
be mindful of this, and that numerical noise will tend to act to reduce the calculated correlation between 
inputs and outputs; 

 It has been observed that numerical noise can invoke cliff-edge effects in the calculation, where key 
events may or may not happen within a set of very similar or nominally identical input decks. This can 
lead to multiple peaks in the output distributions which are not related to the physical uncertainty of 
the input parameters being tested. Ideally, effort should be made to understand the cause of such 
divergences to determine whether the scenario being analysed is particularly vulnerable to these 
effects, though this may not always be possible due to the limited information available to the analyst; 

 The effect of time steps on numerical noise is complex, and is dependent on the output quantity. 
However, a general observation is that larger time steps will result in a narrower distribution of results, 
given that a smaller number of cycles will be required to progress the calculation by a given amount 
of time. This means that there will likely be a trade-off between time step sizes to balance accuracy 
with the desire to minimise the size of the noise distribution. The reduction in width of the output 
distributions was only small with larger time steps and was not observed for all output quantities. It is 
therefore anticipated that smaller time steps would be preferred for most applications, which is to be 
balanced with the requirement for calculations to run to completion within practical timescales. Further 
work would be needed to determine optimal time step sizes or ranges for the different phases of the 
accident; 

 Given the size of typical uncertainties in severe accidents, it is expected that time step optimisation 
will not be necessary for most cases. This was demonstrated using the small-scale PWR deck. 
However, a repeat of this analysis would be required for more complex decks in order to conclude if 
this holds true in general. It is recommended therefore, that an analyst gains an appreciation of the 
numerical noise distributions in the context of the overall uncertainty distributions, and understands 
how the time steps may affect these distributions, as part of a rigorous uncertainty quantification. 
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